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Sayantika Bhowal,∗∗ S. Satpathy, and Pratik Sahu
Department of Physics & Astronomy, University of Missouri, Columbia, MO 65211, USA

Abstract. Skyrmions were originally introduced in Particle Physics as a possible mechanism to explain the
stability of particles. Lately the concept has been applied in Condensed Matter Physics to describe the newly
discovered topologically protected magnetic configurations called the magnetic Skyrmions. This elementary
review introduces the concept at a level suitable for beginning students of Physics.

1. INTRODUCTION

The basic objects of Classical Mechanics are stable particles, characterized by a non-zero mass,
which live for ever. In contrast, at a fundamental level, elementary particles such as electrons and
protons are described using quantum field theory, where they are thought of as wave-like excitations
of an underlying field. It is however a non-trivial task in field theory to make these wave-like ex-
citations stable; they would generally dissipate similar to the disappearance of the waves in a pond
once they have been created. In the year 1962, Skyrme [1] proposed the idea that the particles do
not decay because they are topologically protected, in the sense that they have a topological number,
which can not be changed by a continuous deformation of the underlying field. In topology, a donut
is topologically equivalent to a cup, as they both contain one hole, and one can be continuously
deformed to the other. A sphere contains no hole and is topologically different, and thus can not be
deformed into a donut by continuous deformation. Sometime later, it was pointed out that topologi-
cally protected systems may be relevant in condensed matter physics [2, 3]. Recently, there has been
a flurry of theoretical and experimental works [4] showing that topologically protected states can
be stabilized in chiral magnets in the form of a swirling spin texture called a “magnetic Skyrmion.”
The present review aims at introducing the basic concepts of the magnetic Skyrmion to beginning
students of Physics.

2. MAGNETIC INTERACTION IN SOLIDS

In magnetic solids, such as Iron, atoms acquire a magnetic moment due to the spin of the electron,
or in some cases due to its orbital motion. Arranged on a periodic lattice structure in the solid,
the atomic moments interact with one another, leading to well defined magnetic structures such
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Figure 1. Different types of magnetic states in solid. (a) Ferromagnetic state, (b) An-
ti-ferromagnetic state (c) Helical state, and (d) Skyrmion state. For the ferromagnetic
and the anti-ferromagnetic structures, magnetic moments of individual atoms are ar-
ranged as shown. In the helical state, ferromagnetic planes are stacked on top of one
another, with their magnetic moments turning with the periodicity determined by the
helical length λhel. The Skyrmion state is characterized by a certain Skyrmion number
as discussed in the text. (Fig. (d) is reproduced with permission from the authors of
Ref. [5].)

as a ferromagnet or an anti-ferromagnet. The simplest Hamiltonian that describes the interaction
between the magnetic moments is the Heisenberg Hamiltonian

HH = J
∑
ij

~Si · ~Sj , (1)

where ~Si is the (spin) magnetic moment at site i and J is the interaction between nearest neighbors.
The sign of J determines the relative alignment of the spins, e.g., if J < 0, the spins prefer to align
parallel to each other (ferromagnet) so that the energy is a minimum. On the other hand, a positive J
leads to an antiparallel alignment resulting in an antiferromagnetic structure (See Fig. 1). In solids
with strong spin-orbit coupling and broken inversion symmetry, a cross-product or chiral interaction,
known as the Dzyaloshinskii-Moriya (DM) interaction exists. Although much smaller in magnitude
than the Heisenberg interaction, the DM interaction can lead to fundamentally new Physics. The
DM interaction reads

HDM =
∑
ij

~Dij · (~Si × ~Sj), (2)

where ~D is the strength of the DM interaction. In contrast to the Heisenberg interaction which
only favors parallel or antiparallel alignment of the spins, the DM interaction favors a canted spin
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Figure 2. Polar coordinates to describe the spin texture in the continuum model of the
Skyrmion state. The direction of the magnetization vector ~n(~r) depends on its location
~r on the 2D plane, described by the polar coordinates (r, α), but ~n(r, α) can point
anywhere in 3D, described by the spherical coordinates θ and φ at each point ~r. For
the skrmion state, the polar angle θ(r) and the azimuthal angle φ(α) are functions of
only r and α, respectively. An electron moving in the spin texture ~n(~r) experiences a
topological electric amd magnetic field, caused by the fact that the electron spin must
follow the local spin directions as it moves in the 2D space.

alignment (energy becomes minimum if the two spins are perpendicular to each other and lie on a
plane normal to ~D, as can be immediately seen from Eq. 2).

The presence of both the Heisenberg and the DM interactions leads to a helical spin state,
and the DM interaction under certain conditions can lead to the Skyrmion state as well, which
we will discuss shortly. In the simplest helical state, ferromagnetic planes of spins turn along the
direction normal to the planes, with a helicity angle ϑ and the helical period λhel = 2π/ϑ (Fig. 1
c). The helicity angle is determined by the minimization of the net energy, coming directly from the
expressions for the Heisenberg and the DM interactions,

E(ϑ) = JS2 cosϑ+DS2 sinϑ, (3)

which leads to ϑ = tan−1(D/J). The helical period (λhel) in some representative materials are
listed in Table 1, which is indicative of the strength of the DM interaction.

3. THE SKYRMION STATE

The Skyrmion state is a complex magnetic state, the formation of which is mediated by one of
several mechanisms [6–9], viz., (i) The DM interaction together with a magnetic field, (ii) Magnetic
dipolar interaction, (iii) Frustrated exchange interaction, (iv) Four-spin interactions, and (v) Rashba
spin-orbit coupling in the presence of itinerant electrons (polaronic Skyrmion).

In addition, the Skyrmion state is defined such that θ(r) changes from θ = π at the center

Student Journal of Physics,Vol. 8, No. 2, 2020 43



Table 1. Néel temperatures (TN ) and helical periods (λhel) in some of the magnetic
materials with broken inversion symmetry.

Materials TN (K) λhel (nm)

MnSi (Bulk) 30 18
MnSi (Thin film) 45 8.5
MnGe (T = 20 K) 170 3

Mn0.5Fe0.5Ge 185 14.5

to θ = 0 at the boundary of the Skyrmion (r = λ) or vice versa. Single-valuedness of the spin
orientation demands that the azimuthal angle is of the form

φ(α) = mα+ γ, (winding number m and helicity parameter γ defined) (4)

A magnetic Skyrmion is a swirling magnetic structure of spins as illustrated in Fig 1. It is usually a
two-dimensional (2D) object, existing at interfaces between two materials or in magnetic thin films.
The topological properties depend on the geometry of the structure. The two key characteristic
geometrical quantities are the vorticity and the helicity of the structure, which are a characteristic
of how the spin orientation ~n(~r) changes over space. Note that for the lattice, the position ~r takes
discrete values, while in continuum models it is a continuous variable. The spin orientation at each
point ~r ≡ (r, α) on the 2D plane is described in the spherical coordinates by specifying the polar
and azimuthal angles, θ(~r) and φ(~r), respectively, as indicated in Fig. 2. For the Skyrmion state,
θ(~r) is a function of the radial distance r only and φ(~r) is a function of the polar angle α only, so
that in the cartesian coordinates, the local magnetization vector is

~n(~r) = (sin θ(r) cosφ(α), sin θ(r) sinφ(α), cos θ(r)). (5)

where φ(α) is given in Eqn.(4) with m is a non-zero integer called the winding number. Skyrmions
and anti-Skyrmions are defined as those for which the winding number is positive or negative, re-
spectively. The helicity parameter γ takes specific values for helical states. If γ = ±π/2, then the
helicity h = ±1 (the two signs indicate left or right handedness), while for γ = 0 or π, we have a
radial spin structure. The Skyrmion spin texture for the winding number m = 1 and for different
helicity parameters γ = 0, π,±π/2 are shown in Fig. 3 for illustration.

Physically speaking, a 2D magnetic Skyrmion can be thought of as a topological object which
is formed by a stereographic projection from a spherical “hedgehog” of spins as shown in Fig. 3,
where the down spin at the south-pole is mapped onto the center of the 2D disk, while the up spin
at the north-pole is mapped onto the edge circle of the disk, far off from the centre. The Skyrmion
number Nsk denotes the number of times ~n(~r) wraps around the unit sphere. As shown in Section
5, the Skyrmion number simply equals the winding numberm apart from a sign. Note that for trivial
magnetic structures, e.g., ferro and antiferromagnetic order, Nsk = 0, while for the example shown
in Fig. 3, the Skyrmion number is one.
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Figure 3. Top panel: Several Skyrmion spin structures corresponding to the winding
number m = 1 and helicity parameter γ = 0, π,±π/2. The in-plane components of
the spins are indicated by arrows, while the color map denotes the out of-plane compo-
nent of the spin, where the black and white colors represent the down and up spin state,
respectively. Top panel right: The spherical “hedgehog” of spins, the stereographic
projection of which leads to the 2D magnetic Skyrmion as discussed in the text. The
figure corresponds to the winding number m = 1. Bottom left: The phase diagram
of MnSi in the parameter space of temperature (T) and magnetic field (B), showing
the stabilization of the Skyrmion phase (the so called “A-phase”) with small external
magnetic field. Bottom middle: The real space configuration of the Skyrmion crystal
in Fe0.5Co0.5Si subjected to a weak magnetic field. Bottom right: The magnified view
of this Skyrmion spin texture. The direction of the spin at each point is described by
the color map: black color denotes ↑ or ↓ spin and the white arrows denote the in-plane
component. Figure reproduced with permission from: top panel, Ref. [4] c© 2013
Springer Nature; bottom left, Ref. [10] c© 2009 AAAS; bottom middel and right, Ref.
[11] c© 2010 Springer Nature.

Experimental observation – Skyrmions were first observed in the year 2009 in MnSi using neu-
tron scattering [10], when the well-known A-phase of MnSi was identified as the Skyrmion phase
(Fig. 3). As shown in the figure, the Skyrmion lattice was stabilized at the boundary between the
paramagnetic phase and a long-range helimagnetic phase, under the application of a small exter-
nal magnetic field. The DM interaction induced by the symmetry-breaking distortions in the B20
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phase [12] plays a crucial role in stabilizing the Skyrmion state in MnSi. Since then, other exper-
iments have confirmed the existence of the Skyrmion state in a large number of chiral magnets,
such as MnGe, Fe1−xCoxSi, etc [13]. More recently, experiments have shown the emergence of the
Skyrmion state in oxide heterostructures [14, 15], when subjected to an external electric field. Such
magnetic Skyrmion states are shown to be tunable by the external electric field, which controls the
DM interaction at the interface [15].

In solids, the Skyrmions often form a periodic lattice (the Skyrmion crystal), rather than oc-
curring as a single isolated Skyrmion. The Skyrmion crystal has a lattice structure, different from
the atomic lattice of the host with a lattice spacing ∼ 50 − 100 times larger than that of the under-
lying atomic lattice. The Skyrmion crystal phase can be detected by neutron scattering and usually
small-angle neutron scattering (SANS) is employed for this purpose. An alternative technique is the
resonant X-ray scattering. While these are momentum-space techniques, other methods such as the
scanning probe microscopy are suitable for the direct real-space detection of the Skyrmion crystal
or the isolated Skyrmions at the nanometre scale.

4. SKYRMION FORMATION: THE DZYALOSHINSKII-MORIYA MECHANISM

In this Section, we describe the formation of the Skyrmion state due to the DM interaction, which
is a key mechanism. For the Skyrmion state to form, its energy must be lower than other compet-
ing magnetic states. For this to happen, certain types of magnetic interactions need to be present.
According to the scaling argument of Derrick [16], formation of the Skyrmion state requires an odd
power of the spatial gradient of ~n(~r) (note that ~n is simply the direction of the spin ~S) in the energy
expression. In these models, the magnitude of ~S remains the same everywhere in space, but their
orientation can change depending on the interaction.

The simplest model that can host the Skyrmion state has the DM interaction, which contains
the gradient ~∇~n to the first power. Using familiar notations, the Hamiltonian reads

H = J
∑
ij

~Si · ~Sj +
∑
ij

~Dij · (~Si × ~Sj)−As
∑
i

(Szi )2 −B
∑
i

Szi , (6)

where we have considered a spin model for a 2D system, where J is the FM Heisenberg exchange
interaction, D is the DM interaction, As is the single-ion anisotropy, and B is an external magnetic
field. It can be immediately seen by inspection of the Hamiltonian in the continuum limit, Eq.
(7), that the DM interaction contains the only odd-power gradient term and therefore without it, a
Skyrmion can not exist.

For the purpose of illustration, we take the DM interaction of the form[17] ~Dij = D r̂ij × ẑ,
which may arise from the Rashba SOC at a 2D interface [17], and write the Hamiltonian (6) in the
continuum limit. The result is

E =

∫
d2r
[J

2

∑
µ=x,y,z

(~∇nµ)2 +D(nz∂xn
x − nx∂xnz − ny∂ynz + nz∂yn

y)

−As(nz)2 −Bnz
]
, (7)
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Figure 4. (a) Skyrmion solution of the second order differential equation (8) for the
parameters (α, β, γ): (1) (0.2, 0.0, 0.1), (2) (0.2, 0.1, 0.0), (3) (0.2, 0.1, 0.1), and (4)
(0.2, 0.1, 0.2). Here, the value of r, at which θ(r) = 0, determines the Skyrmion
size λ, which is a function of the parameters α, β, and γ, and has the typical value
λ ∼ 100 − 1000 Å in real materials. (b) The schematic phase diagram, adopted from
Ref. [18], showing the equilibrium states for the model spin Hamiltonian (6) of a cubic
helimagnet as a function of applied magnetic field (B) and uniaxial anisotropy (As).
The scale of the magnetic field here is B ∼ 0.1 − 1 Tesla, which is the typical value
for which skyrmions have been observed in real materials (See Fig. 3).

where ~∇ ≡ x̂∂x + ŷ∂y . Note that if D = 0, then a uniform ferromagnetic state (~n along ẑ) has the
lowest energy, since any spatial deviation of the spin direction from ẑ increases the total energy, and
therefore any other state including the Skyrmion state would have a higher energy. This is a simple
consequence of Derrick’s stability criterion, since if D = 0 in the energy expression (7), then no
odd power of ~∇~n is present anymore. Substituting the spin texture for the Skyrmion, Eq. (5), in the
energy expression (7) and after some straightforward algebra, we get the expression for the energy
of the Skyrmion state

E = 2π

∫
rdr
[J

2
(θ̇2
r + sin2 θ/r2) +D(θ̇r + sin 2θ/2r)−As cos2 θ −B cos θ

]
, (8)

where we have considered a Skyrmion with unit vorticity (m = 1).
The problem now boils down to the minimization of the energy, which can be done using the

standard methods of the calculus of variations, which leads to the Euler equation

d

dr

( ∂F
∂θ̇r

)
=
∂F

∂θ
, (9)
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where F ≡ F (θ, θ̇r, r) is the integrand in (8). Taking the derivatives, we immediately get a second-
order differential equation

θ̈r + θ̇r/r + α sin2 θ/r − β sin 2θ − sin 2θ/r2 − γ sin θ = 0, (10)

where we have defined the scaled parameters α = 2D/J , β = As/J , and γ = B/J . These are the
scaled DM, anisotropy, and the magnetic field parameters, respectively.

The solution of the differential equation is obtained with the finite difference method with the
boundary conditions: θ(r = 0) = π and θ(r → ∞) = 0, with various values of the parameters α,
β and γ. The results are shown in Fig. 4 (a), which indicate the formation of an isolated Skyrmion
state. Note that the magnetic field (parameter γ) aids in the formation of the Skyrmion state, and as
the strength of the field is increased, the size of the Skyrmion becomes smaller and smaller.

So far we have discussed the role of the DM interaction in the formation of an isolated Skyrmion
state in 2D. In reality, other spin textures such as the cone phase and the helicoid structure can also
be stabilized. The stabilizations of these different magnetic states as a function of external magnetic
field and anisotropy are discussed in Ref. [18] in the context of cubic helimagnets. A schematic of
this phase diagram is shown in Fig. 4 (b).

5. DYNAMICS OF ELECTRONS IN THE PRESENCE OF A SKYRMION: THE TOPO-
LOGICAL MAGNETIC FIELD

In this Section, we discuss the forces acting on an itinerant electron as it moves through the Skyrmion
state, with the local space fixed magnetic moments defined by ~n(~r). The topological electromagnetic
fields are effective fields that the electron sees on account of its motion in the network of the localized
moments. We assume a strong Hund’s coupling, which means that the only possible spin state of
the electron is the one parallel to the magnetization vector of the local spin. Thus as the electron
moves about in space, its spin must conform to the local magnetization direction. An effective
electromagnetic field arises, even though no external electric or magnetic field has been applied.
These are the so called “emergent” or “topological” fields that the electron experiences because the
local magnetization vector changes from point to point.

Let us consider an electron moving in a spatially varying spin texture of the Skyrmion state,
with the local magnetization vector ~n(~r) described by (θ, φ) in the spherical coordinates (see Fig.
2). We take the large Hund’s coupling limit (JH → ∞, typically a few eV in the solid), so that the
electron spin is everywhere parallel to the local moment as it moves about in the presence of the
Skyrmion. Thus the spin wave function of the electron can be written as

|χ(~r)〉 =

[
cos θ(r)2 e−iφ(α)

sin θ(r)
2

]
(11)

in the global spin up (↑) and down (↓) basis set. As a result, the spin of the electron rotates spatially
as if it experiences an effective magnetic field ~B(~r) and precesses about this magnetic field. This
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Figure 5. Spatial variations of the topological magnetic field (17) and the scalar poten-
tial V (r) (18) for the Skyrmion profile, Eq. (16). The radius of the Skyrmion λ is taken
to be 100 Å. For this figure, we have taken ~ = c = e = 1.

physical picture is easy to follow from the kinetic energy of the conduction electron moving in a
Skyrmion spin texture ~n(~r),

Ekin = 〈Ψ|(−~2∇2/2m)|Ψ〉, (12)

where the wave function is a direct product of a spatial part and a spin part, viz.,

|Ψ〉 = ψ(~r)χ(~rσ). (13)

Writing ∇2 = ∂2
r + 1

r∂r + 1
r2 ∂

2
α and |Ψ〉 = ψ(r, α)(cos θ(r)2 e−iφ(α)| ↑〉+ sin θ(r)

2 | ↓〉), and taking
into account the symmetry of the Skyrmion i. e., θ ≡ θ(r) and φ ≡ φ(α), after some algebra we get
the kinetic energy of the electron

Ekin =
−~2

2m

∫
d2r
[
ψ?∇2ψ − |ψ|2

( θ̇2
r

2
+
φ̇2
α cos2 θ/2

r2

)
− i2φ̇α cos2 θ/2

r2
ψ?ψ̇α

]
=

1

2m

∫
d2r ψ?

[
(~p− e ~A/c)2 + V

]
ψ, (14)

where ~p ≡ −i~~∇, e < 0 is the charge of the electron, and the derivatives are indicated by the sub-
scripts, e.g., ψ̇α ≡ ∂ψ/∂α. Also, here, V = 4−1~2

(
r−2φ̇2

α sin2 θ+θ̇2
r

)
, ~A = Φ0

2πr (φ̇α cos2 θ/2)(r̂×

ẑ) with V and ~A being the scalar and the vector potentials respectively, and Φ0 = hc/e is the flux
quantum in cgs units. The scalar potential corresponds to a radially outwards force, while the vector
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potential ~A leads to the topological magnetic field

~B(~r) = ~∇× ~A = ẑ(∂xAy − ∂yAx) = ẑ
Φ0

2π

θ̇rφ̇α sin θ

2r
(15)

=
Φ0

4π
~n ·
(
∂x~n× ∂y~n

)
ẑ. (topological magnetic field)

We pause here to consider the special case where the magnetization vector ~n points along ẑ
everywhere (θ = φ = 0), for example, for the case of the ferromagnetic state. Then clearly both
the scalar and vector potentials are zero from the above expressions and the electron moves as a free
particle. In the Skyrmion state, however, the electron experiences a spatially varying topological
magnetic field. Let us assume the Skyrmion profile

θ(r) = π(1− r/λ), r ≤ λ

= 0, r > λ

and φ(α) = α, (16)

where λ denotes the Skyrmion radius. Using these functional forms of θ(r) and φ(α), it is easily
seen that the topological magnetic field is along ẑ with the magnitude

Bz = − Φ0

4λr
sin(πr/λ), if r ≤ λ

= 0 , if r > λ,

(17)

and

V (r) = 4−1~2
[ sin2(πr/λ)

r2
+
π2

λ2

]
, if r ≤ λ

= 0 , if r > λ.

(18)

The spatial variation of these quantities are shown in Fig. 5. As can be seen from these plots, at the
centre of the Skyrmion (r → 0) |Bz| = V (r) = π2/2λ2. For typical Skyrmion radius λ = 100 Å,
this leads to a large topological magnetic field (∼ 102 Tesla), which thus provides a unique platform
to study the high magnetic field response of electrons [19].

Tight-Binding description – In the above analysis, we obtained the topological magnetic field
from a continuum description, while in the solids, the Skyrmions exist of course on crystal lattices.
A different way of obtaining the topological magnetic field is to consider the phase accumulated
by the traveling electron in the lattice. As the electron travels, its spin must follow the fixed local
magnetization direction ~n(~r) adiabatically, as we already discussed. The hopping matrix element
between two lattice sites a and b, in the tight-binding theory becomes

tab = 〈Ψa|H|Ψb〉 = 〈ψa|H|ψb〉 × 〈χa|χb〉 = teiη, (19)

Student Journal of Physics,Vol. 8, No. 2, 202050



  

a

b
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Figure 6. In the presence of a magnetic field, the amplitude to go from point a to point
b acquires an extra phase factor

[
exp

(
ie
~c
∫ b

a
~A · ~dr

)]
, where ~A is the magnetic vector

potential, as discussed in the Feynman Lecture Notes [20]. This modifies the hopping
amplitude in the tight-binding theory as indicated in Eq. 20.

where t = 〈ψa|H|ψb〉 is the electron hopping without the spin texture and in the last equality, we
have assumed a slowly varying spin texture (i. e., change in θ and φ between nearest neighbors in
the lattice is assumed to be small). As is well known from the seminal book by Feynman [20], when
an electron moves in a magnetic field, it acquires a phase factor (see Fig. 6), viz.,

tA 6=0 = tA=0 × exp
( ie
~c

∫ b

a

~A · ~dr
)
. (20)

Comparing Eqs. (19) and (20), it is clear that even though no external magnetic field is present, the
adiabatic motion of the electron in the spin texture is equivalent to a magnetic field, the “topological”
magnetic field. Expressing the phase factor in Eq. (19) in terms of the Skyrmion texture θ(~r)
and φ(~r) and after some straightforward algebra, one again gets the expression Eq. (15) for the
topological magnetic field ~B(~r).

Magnetic flux through the Skyrmion – It is easy to show that the flux through the Skyrmion
due to the topological magnetic field is an integer multiple (the Skyrmion number Nsk) of the flux
quantum Φ0. Computing the flux through the 2D surface containing the Skyrmion with the magnetic
field Eq. (15), we have

Φ =

∫
S

~B · d~S =
Φ0

4π

∫ [
~n ·
(
∂x~n× ∂y~n

)]
dS = Φ0Nsk, (21)

where the Skyrmion number Nsk characterizes the swirling structure of the Skyrmion. The fact that
the Skyrmion number is an integer is a simple consequence of the boundary conditions imposed on
~n(~r) to define the Skyrmion state. Using the Skyrmion spin texture Eq. (5), we can immediately see
that the Skyrmion number is simply the winding number m times a sign η = ±1,

Nsk =
1

4π

∫ ∞
0

dr sin θ(r)θ̇r ×
∫ 2π

0

dα φ̇α = ηm. (22)

The quantity η = 1
2 cos θ(r)|r=∞r=0 = ±1 is related to the magnetization direction at the origin, i. e.,

if the spins point up at the origin (r = 0) and down at r → ∞, then η = +1, and it is −1 in the
opposite case.
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6. SKYRMIONIC POLARON

In this Section, we discuss the idea whether an electron can nucleate a Skyrmion state. The term
“Skyrmionic polaron” has been recently coined [9] to describe such a system, which is analogous
to the standard polaron state, which is a combination of an electron and the distorted lattice, which
together form a localized state due to the electron-phonon interaction.

Interfaces are of interest because they are fertile grounds for the experimental observation of
the Skyrmions. It has been recently suggested that the Skyrmionic polaron may exist at the interface
between two solids, aided by the so called Rashba spin-orbit coupling [21]. The idea is that due
to the broken mirror symmetry, an electric field perpendicular to the interface plane can exist, and
if a large spin-orbit coupling is present, they both together lead to the momentum-dependent spin
splitting of the electron states at a surface or interface, known as Rashba effect [21].

Rashba spin-orbit interaction – The Rashba interaction is a relativistic effect, originating from
the coupling between the spin and the orbital degrees of freedom, when an electric field is present
along a certain direction. This happens in solids when the mirror symmetry is broken, e.g., at
the surface or at the interface between two materials. The Rashba interaction is described by the
Hamiltonian

HR = αR(σxky − σykx), (23)

where ~k is the electron momentum, ~σ = (σx, σy, σz) are the Pauli matrices, and αR is the strength
of the Rashba interaction. Diagonalization of (23) leads to the additional linear splitting term on top
of the quadratic band structure energy, with the result εk = (~2k2/2m)± αRk.

The microscopic origin of the Rashba interaction is similar to the relativistic effect that leads
to the well-known λ~L · ~S term in the atoms. Consider an electron moving in an electric field Eẑ,
relevant for the Rashba problem. Due to the relativistic effect, in its rest frame, the electron sees
the electric field as a magnetic field ~B = −(~v × ~E)/c2, which couples with the spin magnetic
moment. The interaction energy is given by HR = − ~M · ~B = (gµB~σ/2) · (~v × ~E)/c2. Writing
~v = ~~k/m and rearranging the terms, one immediately finds the Rashba Hamiltonian (23), with the
Rashba coefficient αR is expressed in terms of the various fundamental quantities. In addition, one
can easily show that if instead of the uniform field along a fixed direction, the nuclear electric field
along the radial direction is used, we would obtain the well-known λ~L · ~S term in atomic physics.

The Rashba interaction leads to many interesting phenomena in condensed matter physics, but
relevant for the present case is the fact that it produces a Dzyaloshiski-Moriya interaction ~D · (~Si ×
~Sj) between two local spins [17], which facilitates the formation of a Skyrmion state by supporting
a non-collinear alignment of the spins. So, the question that naturally arises is whether a single
electron with the Rashba interaction in a 2D system can nucleate a Skyrmion state for the local
spins.

Formation of the Skyrmionic polaron– Consider the following continuum model for a single
electron moving in the Skyrmionic spin texture ~n(~r) in the presence of the Rashba interaction. The
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Hamiltonian is

H =
~2k2

2m
− J~n · ~σ + (σxky − σykx)− bz

∫
nz(~r) d

2r, (24)

where we have added a magnetic field bz normal to the plane for generality because in certain situa-
tions, the Skyrmion state is stabilized by a magnetic field, and the exchange coupling J between the
local spin texture and the electron spin will be taken as∞. The large J → ∞ condition effectively
renders this to a spinless problem as the electron spin is always parallel to the spin texture ~n(~r)

everywhere as the electron moves around. Switching to the spin basis to be along the local moments
(Eq. 11), and modeling the Skyrmion texture ~n(~r) again by the form: θ(r) = π(1 − r/λ), r ≤ λ,
and 0 otherwise, and φ(α) = α, the spinless electron experiences the magnetic field as well as a
static potential given by Eqs. (17) and (18), respectively.

We can then proceed to obtain the ground state configuration of the Skyrmion by minimizing
the total energy of the Hamiltonian (24) from the variational method, treating the Skyrmion radius
λ as the single variational parameter. The average topological magnetic field has the value B̄ =

Φ0/(πλ
2) and the corresponding magnetic length l = λ/

√
2. The quantized electron states of the

electron moving in a magnetic field are the Landau levels, with the lowest energy being ~ωc/2 =

~2/(mλ2), ωc being the cyclotron radius. The potential energy may be approximated as 〈V (r)〉 =

V (l), where we simply evaluate the expression (18) for V (r) at r = l.
The third term in the Hamiltonian (24) is the Rashba term. We evaluate the Rashba energy for

the symmetric wave function ψ(r), where there is no angular dependence α, with the result

HR = 〈ψ(r) ↑ |αR(kxσy − kyσx)|ψ(r) ↑〉 =
αR
2

∫
|ψ|2 × (θ̇r −

φ̇α
r

sin θ) d2r, (25)

where ↑ denotes the spin aligned along the local moment and ~k ≡ −i~∇. Evaluating this integral and
putting together all energy terms, we finally arrive at the result

E(λ) =
~2a

2mλ2
+ πbzλ

2(1− 4

π2
)− αRb

λ
, (26)

where a = π2/4 + 2 + 2−1 sin2(π/
√

2) and b = π/2 + 2−1/2 sin(π/
√

2) are numerical constants,
and the three terms are respectively the kinetic energy, the external magnetic field energy, and the
Rashba energy. Minimizing the energy dE(λ)/dλ = 0 with no external magnetic field (bz = 0), we
obtain the Skyrmion radius and the corresponding ground state energy. The result is

λ0 ≈
2~2

mαR
, and E0 ≈ −

3mα2
R

4~2
. (27)

Clearly, without any Rashba interaction (αR = 0), the Skyrmion radius λ0 is infinity, indicating
that there is no Skyrmion state, while the presence of the Rashba term favors the formation of the
Skyrmion state with the binding energy E0. The result is that the electron nucleates the Skyrmion
state and in turn becomes bound inside it, forming thereby the “Skyrmionic polaron.” From Eq. (26),
it can be seen that an external magnetic field further aids in the formation of the Skyrmionic polaron,
making its radius smaller and the binding energy larger.
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7. APPLICATIONS AND FUTURE PERSPECTIVE

The topic of the magnetic Skyrmions has been rapidly developing over the past few years, both from
the viewpoint of fundamental physics as well as the prospect for technological applications [22]. The
Skyrmion spin texture is topologically stable with small thermal and quantum fluctuations, which
makes it suitable for applications in memory devices. The unusual electron dynamics and transport
properties such as the Topological Hall effect (THE) [4, 13, 23] could have important application in
spintronics devices. While the first discovery of the Skyrmions occurred in bulk materials with chiral
magnetic interactions, the realization that they can also be stabilized at the interfaces of magnetic
multilayers [24] has opened up additional potential opportunities, including novel pathways for
Skyrmion generation and manipulation.

A promising application involves the so called Topological Hall effect (THE). In the well-
known classical Hall effect, discovered by Edwin H. Hall in 1879, when a current carrying conductor
is placed in a magnetic field, the charges experience a Lorentz force in a direction perpendicular to
both the magnetic field and the current flow. In contrast to this, in the Topological Hall effect, it is
the topological magnetic field of a non-collinear spin system such as the Skyrmion gives rise to the
Lorentz force on the conduction electron, resulting in a different type of Hall effect. At the same
time, the motion of the Skyrmion itself leads to a temporal variation of the topological magnetic
field. This, in turn, induces an electromotive force or potential according to the Faraday’s law. This
topological electric field gives an additional contribution to the Hall effect. This has been observed
recently in epitaxial thin films and even in nanowires, demonstrating the physical reality of the
topological electromagnetic fields in solids [25].

A large number of Skyrmion based innovative devices have been recently proposed [26–28],
although there remains several important issues to be resolved [22] before practical applications
can be made. A notable Skyrmion based memory device is the Skyrmion racetrack memory, which
has received considerable attention [26]. While a prototype racetrack memory has been success-
fully demonstrated, a practical electrical read-out scheme still remains to be developed. Another
intriguing idea is the use of a single Skyrmion as the information bit [29]. Research on the mag-
netic Skyrmions is currently in its infancy, with rapid development in the fundamental physics and
applications expected in the coming years.
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STUDENT JOURNAL OF PHYSICS

Pion Decay Constant from Lattice QCD

Abstract. We present results for the value of the pion decay constant fπ , needed for understanding weak pion
decay. We analyze lattice-QCD data from six ensembles generated by the MILC collaboration. Lattice spacings
of a ≈ 0.06, 0.09, and 0.12 fm are used, along with pion masses of mπ ≈ 130, 220, and 310 MeV. Statistical
errors are quantified and accounted for using jackknife resampling. Using a ground-state fit, the mass and decay
constant are estimated for each ensemble. These estimates are then used to extrapolate the decay constant to
the physical point. This procedure yields fπ = 103.5(4.5) MeV with no QED correction and 102.7(4.7) MeV
in the chiral limit.

1. INTRODUCTION

The pion decay constant fπ is a multiplicative term used to describe the coupling of the charged pion
to the mediating W boson in weak decay. The constant’s precise value is important for checking a
unitarity constraint on the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which describes the inter-
generational mixing of quark flavor. If fπ is known with small enough uncertainty, along with the
kaon decay constant fK , the matrix element Vus can be precisely determined, giving us insight into
the possibility of new physics beyond the Standard Model. To improve the precision of the matrix
element, we need theoretical work to decrease the uncertainty associated with its calculation. The
goal of this work is, therefore, to use state-of-the-art lattice-QCD calculations to determine fπ and
compare with other theoretical values.

Lattice QCD is a nonperturbative numerical technique used to investigate the properties of
hadrons. Lattice must be used because of the complexity of the QCD vacuum associated with the
Goldstone pion. Rather than an empty vacuum we would expect classically, the QCD vacuum
introduces topological charge and the effects of chiral symmetry breaking that restrict the use of
perturbative methods. Lattice QCD discretizes four-dimensional Euclidean space, then solves path
integrals over configurations that are placed onto the lattice. During the discretization, a lattice
of spacing a is laid over the hypercube, where vertices hold the quarks, and the connections hold
the gluons. Data is then extracted with a correlation function, designed to work specifically with
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the set of lattice data. A correlation function contains operators at two points in spacetime and
describes the evolution of a state from its source to sink [1]. The lattice gauge configurations of
Nf = 2 + 1 + 1 were computed by the MILC collaboration [2]. The correlation functions were
constructed by the PNDME collaboration [3]. To improve the distinction between the ground and
excited states, the lattice operators are smeared. Smearing is equivalent to describing a hadron with
a state created by an operator of nonzero spatial extent, rather than by a point. An example could
be stretching the point into the shape of a gaussian distribution. This procedure helps improve the
overlap of the creation and annihilation operators with the hadronic state of interest. Lattice QCD
introduces deviations from the physical world such as discrete space and non-physical pion masses
(used for computational convenience). However, these values can be extrapolated to physical ones
as explained in the methodology.

2. METHODOLOGY

This work looks at two different types of smeared data. The first has both the source and sink
smeared and is referred to as smear-smear; its correlation function looks like:

Cs(t) ≈
Z2
s

2amπ
e−amπt = Ase

−amπt (1)

where Cs(t) is the correlator for the smear-smear dataset, Zs is a measurement of the amount of
overlap between the smeared operator and the pion ground state, t represents the number of time-
steps between the source and sink, and amπ is the mass of the pion in lattice units. It should be
noted that Z2

s

2amπ
can be written as the smear-smear amplitude As, which is a parameter used in the

fitting procedure. The other type of smearing used is local-axial, which smears only one component:

Ca(t) ≈
Zs

2amπ
〈π|At|0〉 e−amπt = Aae

−amπt (2)

where Ca(t) is the local-axial correlator, 〈π|At|0〉 is the axial-current matrix element, and At is the
axial current qγ5q, where q is an antiquark, q a quark, and γ5 represents the product of all gamma
matrices. 〈π|At|0〉 is a constant proportional to fπ through the relation

〈π|At|0〉 = f bare
π mπ, (3)

where f bare
π is the pion decay constant before renormalization, and mπ is the pion mass.

Because we are ultimately interested in finding 〈π|At|0〉, its plots need particular attention. The
shape of this plot changes between datasets, as do the others, but is unique because it cannot be found
directly from fitting Cs(t) and Ca(t) independently. From Eq. 2 one can see that the ground-state
fit will yield amπ and Aa. The constant 〈π|At|0〉 can then be solved for if Zs is known from a fit of
Cs(t). This method of finding 〈π|At|0〉, referred to as Method I, is compared to another method to
determine the most stable approach. Method II requires one fit of a manipulated correlator:

Ca(t)
2

Cs(t)
≈ 〈π|At|0〉2

2amπ
e−amπt = Are

−amπt (4)
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where amπ and Ar is the mass and amplitude of the manipulated correlator, respectively. By com-
paring the 〈π|At|0〉 evolution plots for these two methods we can determine which is better suited
for finding the constant. Figure 1 shows a plot of the fitted matrix element as a function of tmin, the
minimum time used in the fit, for both methods. The manipulated correlator is slightly less stable
because it is constantly increasing; for this reason all values of 〈π|At|0〉 were found using Method I.

Figure 1. The constant 〈π|At|0〉 as a function of minimum fit time for both fit methods
of the a06m310 ensemble. Because the result from Eq. 4 (orange markers) is always
increasing, it was deemed less stable than the method requiring a fit of each the Cs(t)
and Ca(t) correlators from Eq. 1 and Eq. 2, respectively (blue markers).

The constant 〈π|At|0〉 can be extracted from the correlator data using an uncorrelated ground-
state fit. The ground-state fit looks like a single exponential term where the two parameters are the
amplitude and energy of the pion at its lowest energy state. Because the lowest-energy state is at
rest, the energy parameter is the mass. Therefore, on a plot of effective mass a good correlator fit
will also fit the effective-mass plateau, where the pion is at its ground-state energy. The effective
mass is given by

meff = ln
(

C(t)

C(t+ 1)

)
, (5)

where C(t) is any correlator. The effective-mass plot is a valuable tool in fitting the correlator,
as it provides easy visualization of the ground state and allows us to easily see whether there is
higher-state contamination. We fit jackknifed correlator data to reduce bias. Because we only want
to fit the ground state, a minimum and maximum time of the fit needs to be designated so that any
points that pull the data away from the ground state are removed. These limits are chosen based on
the evolution of the fitting parameters, 〈π|At|0〉, and the χ2

χ2
min

with increasing tmin and decreasing
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tmax, the maximum time used in the fit (Fig. 2). When the higher state is completely removed these
evolution plots appear stable, showing little to no change in the magnitude of the parameter with
changing tmax or tmin. The effective-mass plot is also consulted, as there may appear many possible
bounds in the evolution plots, the effective mass aids in determining a good fit.

Figure 2. tmin evolution plots, and ground-state fit for the a09m310 ensemble. (Top
left) Mass parameter in lattice units (amπ) changing with increasing tmin. (Top right)
Chi squared approaches one as tmin increases. (Bottom left) The amplitude evolution
with tmin. (Bottom right) The correlator fit band shown on the effective-mass plot as a
function of time. Uncertainty is given as the width of the band. The minimum time is
chosen to be in a region that is relatively stable, for this ensemble tmin = 5 to tmin = 10

was considered stable, in this case tmin = 5 was chosen to fit the most data. tmax is
determined in a similar manner.
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3. RESULTS AND DISCUSSION

The pion mass in lattice units amπ is taken from the effective-mass plot and converted into physical
units mπ for use in Eq. 3. The bare pion decay constant f bare

π can then be renormalized to the pion
decay constant fπ (Table 1) using a renormalization constant ZA found in Ref. [3]. The results from
the fit of all six ensembles are found in Table 1.

Ensemble ZA a (fm) mπ (MeV) fπ (MeV) L3 × T

a12m310 0.95(3) 0.1207(11) 311.0(2.9) 93.3(3.5) 243 × 64
a12m220 0.95(3) 0.1184(10) 288.5(2.0) 95.8(3.6) 323 × 64

a09m310 0.95(4) 0.0888(08) 312.8(2.8) 98.3(4.6) 323 × 96
a09m220 0.95(4) 0.0872(07) 226.6(1.8) 95.8(4.4) 483 × 96
a09m130 0.95(4) 0.0871(06) 142.5(1.0) 93.9(4.2) 643 × 96
a06m310 0.97(3) 0.0582(04) 319.5(2.2) 101.9(3.5) 483 × 144

Table 1. The renormalization constant ZA and lattice spacing a for each ensemble [3],
along with the fit results for pion mass mπ and decay constant fπ with their respective
statistical errors. The far right column labels the lattice sizes along the spatial (L) and
temporal (T ) directions.

The results from the correlator fits cannot yet be compared to the physical value because of the
non-physical assumptions made during the lattice calculation. The lattice spacing and pion mass
must be extrapolated to their physical values. Using the fit function [3, 4]:

f(a,mπ) = C0 + Caa+ Cmm
2
π, (6)

the correlator results can be fit to a plane and the physical value interpreted from this relationship.
The fπ mean and error associated with every ensemble are recreated using the jackknife mean and
variance of a randomly generated gaussian distribution. The jackknife samples are then fit with Eq. 6
and extrapolated to mπ = 139.57061(24) [5], and a = 0. The pion mass and error from Ref. [5]
were also reconstructed for calculation using gaussian sampling.

The extrapolation is viewed as cross sections through a three-dimensional plot so that the de-
pendence of fπ on a andmπ can be viewed independently (Fig.3). When extrapolated to the physical
point the fit of the ensemble data (Table 1) to Eq. 6 yields a value of fπ = 103.5(4.5) MeV.

Compared to the accepted experimental value of 89.80 (1)(9), the errors come from the exper-
imental rate measurement and the radiative correction factor, respectively [5], our value is slightly
large. The difference is less substantial when compered to other lattice calculations such as the value
found in Ref. [3] of approximately 95 MeV. This may be the result of higher-state contamination left
over from the correlator fit. The ground-state fit exposes the mass to the possibility of higher-state
influence. Although the fitting procedure aims to fit only the effective-mass plateau, the possibility
of higher-state influence is not completely eliminated, as the plateau is not always clearly defined. In
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Figure 3. (Top) Final decay-constant fits for all three masses when extrapolated to the
continuum limit as a function of lattice spacing. This is a slice along the mass domain
of the three-dimensional plot generated from Eq. 6. The masses are distinguished by
the marker shape, while the lattice spacing by marker color. The red marker is the value
of fπ at the continuum. The trend shows that fπ decreases with increasing a. The
dependence of fπ on the mass is also visible by the stacking of the fit bands, greater
mass yields a greater fπ . These relationships are again confirmed when observing fπ
versus mπ (bottom), which is a slice along the lattice-spacing domain. It is obvious
that fπ depends heavily on a.
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future work, contamination could be eliminated by using a higher-state fit, accomplished by adding
another exponential term onto the fit function. By including the higher-energy states, there is less
chance of outside contamination during the fit. This analysis also provides values for Ca, Cm, and
the chiral limit C0 (Table 2). These constants provide additional insight into quark behavior.

Fit Results Units

C0 102.7 (4.7) MeV
Ca −94.2 (3.9) MeV · fm−1

Cm 3.78(0.64)× 10−5 MeV−1

fπ 103.5 (4.5) MeV

Table 2. Results from the fit of ensemble data using Eq. 6, where C0, Ca, and Cm are
all constants, and C0 is the chiral limit.

4. CONCLUSIONS

The pion decay constant provides insight into the ability of QCD to explain physics at the femtoscale
(10−15 m). In this analysis fπ is determined from lattice-QCD ensembles generated by the MILC
collaboration [2]. The value for fπ without QED correction is fπ = 103.5(4.5) MeV, considering
only statistical errors. This is slightly higher than [3, 5] which yield a value of approximately
95 MeV and 89.80 (1)(9) MeV, respectively. Future work may investigate the influence of the
higher-energy states in the data. Additionally, this work could be expanded to approximate the value
of the weak mixing matrix element Vus, providing further insight into the accuracy of QCD.
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Abstract-: Germanium is a semiconductor with vivid applications in the field of nanoscience and other
lines of physics. With having known information about the bulk characteristic of germanium, an effort
has been made to investigate the characteristics of germanium when it is in nanoscale. In the present work
effect of size and shape on the melting point and volume thermal expansion of nano-germanium has been
studied. 
Keywords:  Nano-particles, Melting point, Nano-germanium

1. INTRODUCTION 

In the present paper a study of the effect of shape and size on the thermodynamical properties of
nanomaterials has been carried out. Nanomaterials are the materials having size ranging from 1
to 100 nanometers (10− 9meters). Nanomaterials are of current interest because they show noble
physical  and  mechanical  properties  that  may  differ  from  that  of  their  corresponding  bulk
materials [1,2].

The use of nanomaterials is vast and has got many real life applications [3]. Nanomaterials are
mostly used in healthcare products, paints, manufacturing processes. In the field of medicine
enzymes of the size of nanometers, called nanozymes, are used to do or copy the exact work of
an enzyme. Apart from being used as nanozyme, they are also used in bioimaging, biosensing
and many more. They are also used in paints for UV protection. Many high quality and advanced
filters are being made which are capable of removing particulate as small as viruses from water.
There are many other applications in daily human life and some are still yet to be discovered.

The effect of size on the thermodynamic properties of any nanomaterials is quite intense. As the
size  reduces the  surface  to  volume ratio  increases  drastically.  The  change  in  the  surface  to
volume  ratio  changes  the  physical  properties  of  the  material  and  the  effect  of  quantum
confinement  is also observed. The effect of size and shape on the thermodynamic properties
plays very important role to understand the physics of the nanomaterials. In the following section
a theoretical method has been discussed to study the dependency of melting point and coefficient
of volume thermal expansion on the size and shape of nanomaterials. 
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2. METHODOLOGY

The variation in the melting point against the size of nanosolids can be understood using W.H.Qi
model  [4]. Qi proposed a model to compute the melting temperature,  based on the cohesive
energy of nanosolids. The cohesive energy formula reads as follows

                                   Ep=Eb(1− N2n )                                                             (1)

Where Ep and Eb are the cohesive energy of nanosolid and corresponding bulk material. Here n
and N are the total number of atoms of a nanosolid and total surface atoms respectively.

From the above relation of cohesive energy we can directly  write  the expression of melting
temperature  because  there  is  a  linear  relation  among  them [4].  Accordingly  the  melting
temperature can be written as follows-:

                                              T (mp )
=T

(mb )(1− N2n )                                                        (2)

Where T(mp) and T(mb) are the melting temperatures of nanosolid and corresponding bulk material.

To calculate T(mp) we have to first calculate the value of ratio N/n. The values of this ratio depend
upon the shape and size of the nanosolids. In the present work, an attempt has been made to
compute the ratio N/n for nanosolids namely spherical nanoparticles, nanowires and nanofilms. 

To investigate for spherical nanoparticles let the diameter of the particle be D, then the volume is
given by [πDD3/6]. If d be the diameter of the atom, then the volume of each atom is given by
[πDd3/6].

Hence  the  total  number  of  atom  n  is  given  by  n  =  [(πDD3/6)  /  (πDd3/6)],  which  on  further
simplification gives us the value of n = [D3/d3].  Hence number of interior atoms is n-N.  We
know that the surface area of the nanosolid can be written as [πDD2], and the contribution of each
surface atom is [πDd2/4]. Hence the total number of surface atoms is the ratio of the surface area
of the nanosolid to the surface area of the atom, i.e. N = 4 D2 /d2. Thus for the spherical nano-
particle the ratio of N/n is (4d/D).

Similarly the values  of ratio N/n for nanowires  and nanofilms can be computed [4] and their
values are tabulated in the Table-1[4].

Nanosolid N/n
Nanosphere 4d/D
Nanowire (8/3)d/l
Nanofilm (4/3)d/h

Table-1-: Calculated value of the ratio of N/n for three different types of nanosolids. For the disk
like nanosolid l and h are the diameter of nano wire and width of nano film. 
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The change in dimensions of a material, when either heated or cooled, is linearly related to the
change in temperature. Coefficient of volume thermal expansion α is defined as follows,

                                                α=
1
V ( ∂V∂T )

P
                                                            (3)

R. Kumar et al.[5] determined the value of coefficient of volume thermal expansion using eq (3) 
and proposed the following relation of coefficient of volume thermal expansion for nanosolids

                                                  α=α (b )(1− N2n )
(− 1)

                                                         (4)

Where α(b) is the coefficient of volume expansion for bulk material. 

3. RESULTS AND DISCUSSION

Using eq (2) the melting temperature for nano-germanium has been computed and our predicted
results for spherical nanosolids, nanowires and nanofilms are reported in Fig-1. The predicted
results are reported for the particle size up to 13 nm. The results of the melting temperature for
particles having size above 13 nm are similar to their corresponding bulk counterparts.

Fig-1 Size dependence of melting temperature of nanogermanium

It is observed that melting temperature decreases with decreasing size, irrespective of the shape
of the nanosolids. A sharp decrease in the melting temperature is observed below the size 6nm
for all the shapes of nanosolids. At nano-level the surface to volume ratio increases drastically
and the thermodynamic and thermal properties get altered. Having high surface to volume ratio
the atoms are readily available at the surface, which are loosely bound in comparison to their
bulk equivalent. The heat distribution is even and speedy due to which the molecules melt faster
compared to their bulk counterparts. This  is  how  the  size  plays  a  major  role  in
determining  the  melting  temperature  of  nanosolids.  Nevertheless,  the  effect  of  shape  of  a
nanosolid also has a high impact on the melting temperature and we found that it is more for
spherical nanosolid followed by nanowire and nanofilm.
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Fig-2  Size dependence of coefficient of volume thermal expansion of nano germanium

Using  eq  (4)  the  coefficient  of  volume  thermal  expansion  for  nano-germanium  has  been
calculated.  The  comparative  study  of  variation  of  volume  thermal  expansion  of  germanium
spherical nanosolid, nanowire and nanofilm is reported in fig-2. From the results it is noted that
variation in coefficient of volume thermal expansion is significant when the size of the nanosolid
is  less than 10 nm. It  is  found that  the variation  of volume thermal  expansion for spherical
nanoparticles is more compared to nanowires and nanofilms. It is observed that the coefficient of
volume thermal expansion increases as the size of nanosolids decreases. We are reporting our
predicted  results  of  melting  temperature  and  coefficient  of  volume  thermal  expansion  for
nanogermanium in the absence of experimental data. These predictions may be of current interest
to the researchers engaged in the experimental studies.  

EFFECT OF VOID SPACE ON N/n

In order to calculate the number of atoms inside a spherical nanoparticle of diameter D using a
hard sphere model for the atoms of diameter d, one has to know the empty space between atoms
when they are densely packed. This is a nontrivial  problem. We will  use a simple model to
estimate the volume of this void space/atom using a cubic nanoparticle of cube length D inside
which the atoms are arranged in a cubic lattice and use this value for the spherical nanoparticle.
This should be reasonable when D >>d.

Inside a cube of length D (volume D3),  we can tightly pack N0  = (D/d)3 atoms. The volume
occupied by the atoms is Vatom= N0  Vatom = N0 (π/6)d3. The volume of the empty space per atom
then Vvoid = [(D3 - Vatom) / N0] = [1- (π/6)] d3. Using this we estimate the number of atoms inside
the spherical nanoparticle as n = [π/6 (D/d)3] < N0.

Using  similar  idea  we  estimate  the  number  of  atoms  at  the  surface  (N)  of  the  spherical
nanoparticle. We take a shell at the surface of volume Vsurf  = 4π(D/2)2d and obtain the inequality

          
V surf−V void

V atom

<N<
V surf

V atom
                                                                                   (5)
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This reduces to:

           πD (Dd )
2

<N<6( Dd )
2

                                                 (6)

If we use a naïve model where we take the surface area of the nanoparticle [πD2] and divide it by
the cross sectional area of an atom [πd2/4], we get N = [4 (D/d)2] which satisfies the above
inequality and closure to the value which allows for the void space correction, not bad.

                    
N
n

=πD (Dd )
2

×( 6d
3

πDD3 )=6dD                                           (7)

                    Fig 3-: Size dependence of melting temperature of nanogermanium 

The ratio is 3/2 times larger than that obtained by the simple model used earlier 4d/D.  Using eq
(7) we have calculated the melting temperature and coefficient of volume thermal expansion of
nano germanium for spherical nanoparticle and the predicted results are shown in fig 3 and fig 4. 

    Fig 4-: Size dependence of coefficient of volume thermal expansion of nano germanium  
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We have found that the results  of melting temperature computed considering the void space
correction  are  0.66  times  less  than  the  results  obtained  by  the  Qi  model. Predictions  of
coefficient of volume thermal expansion considering the effect of void space may be of current
interest to the researchers engaged in the experimental studies.  

CONCLUSION

In the present work the effect of size and shape on the melting temperature and co-efficient of
volume  thermal  expansion  of  the  nanocrystalline  germanium  has  been  studied.  The  model
predicts that the melting temperature decreases as the size of particles decreases, irrespective of
the shape of the nanosolids. We have found that the co-efficient of volume thermal expansion
increases as the particle size decreases. It is found that the particle shape have large effect on
small particle than on large particle which indicates that the particle shape should be taken in to
consideration  in  the  study  of  thermal  properties  of  nanoparticles  in  small  size.  The  present
approach for melting temperature and co-efficient of volume thermal expansion may be used to
understand behaviour of nanosolids.
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Abstract: In this work a relation has been established for harnessing hydrogen as renewable energy source,

storage of hydrogen is the key factor. Solid state hydrogen storage is the safest method among all the

methods.   Hydrogen storage capacity is an important parameter for application point of view. The various

substitutions and tailoring in the parent alloy may change the storage capacity for specific application. In

present investigation, experimentally observed values of hydrogen storage capacity reported in literature

have been correlated with  the  structural  properties  of  hydrogen storage alloys.  Some of  the  structural

properties like lattice parameters, unit cell volume , void size have been noted from reported values in

literature, while other structural properties like equivalent radius rB*, ratio of rA/rB* and contraction in A-B

bond have been calculated in present study. The effects of these structural properties on multi-element AB 5-

type hydrogen storage alloys have been studied in the present work. 

Keywords:  Hydrogen storage alloys, Hydrogen absorption

1. INTRODUCTION 

Hydrogen  storage  alloys  are  characterized  by  several  properties,  like,  hydrogen  storage

capacity, hydrogen absorption/desorption plateau pressure, kinetics, heat of formation etc. In

storage  applications  like,  vehicles,  Ni-MH  battery,  stationary  storage,  hydrogen  storage

capacity is the most important property [1, 2]. Hydrogen storage alloys are materials, which

absorb hydrogen at certain pressure and desorb it at lower pressure.  Hydrogen atom is stored

in the solid material at interstitial position.  State of the art hydrogen storage alloys are AB5,

AB2, A2B and AB type. Among so many hydrides, AB5 is popular for its easy activation and

operation  at  room temperature  and  at  little  atmospheric  pressure  [1-4].   Tailoring  in  the

hydrogen  storage  alloy  may  be  achieved  either  by  adopting  different  synthesis  route  or

through substitution of other elements in the parent alloy either at ‘A’ or at ‘B’. For specific

requirements  of  hydrogenation  properties,  multi-element  compositions  are  preferred  over

binary compound of AB5. At present no model is available, which can predict the hydrogen

storage capacity of multi-element alloy before synthesis. 
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To understand the ability of hydrogen storage, it is important to discuss the structure of alloy.

In present study, AB5-type alloy has been chosen to demonstrate the structural model. AB5-

type intermetallic corresponds to CaCu5-type structure with hexagonal Unit and space group

P6/mmm [5]. There is one AB5 unit per unit cell. Conditions for ideal packing are:

c = (√2/√3) a.………………………………..(1)  

RB = a/4.....……………………………..(2) 

RA = (a/√3) - (a/4)………………………………...(3)

Where a, c = lattice parameters and RA , RB = Atomic radius

There are in total 34 tetrahedral holes in one AB5 unit. But all the holes cannot be

occupied simultaneously due to stability consideration. One famous rule known as Switendic

Criterion states that minimum distance between two H atoms is 2.1Å [6]. Radius of voids can

be calculated as under [7]. 

Type II AB3 tetrahedral hole (HI site) = RA = 0.075459a ……………………………(4)

Type I AB3 tetrahedral hole (HII site) = RA = 0.076365a …………………………….(5)

The atomic radius  of substituted element  in  the parent alloy may play an important role.

However equivalent radius calculated in the present study for the alloy without synthesis also

seems to be equally important. The effect of structural properties has been studied on three

alloy hydride series. In earlier  studies,  theoretical approach for explaining thermodynamic

properties has been presented [5-8],  but no report  is  available on correlation of structural

properties  with  hydrogen  storage  capacity.  In  this  work,  a  relation  has  been  established

between structural properties and hydrogen storage property. 

2. METHODOLOGY

In  present  investigation,  three  series  of  alloys  have  been studied.  These  alloys  series  are

termed as alloy1, alloy2 and alloy3. The nomenclature of alloys is given in Table 1. For each

alloy  series,  experimentally  observed  values  of  lattice  parameters  ‘a’ and  ‘c’ along  with

hydrogen storage capacity reported in literature have been noted. Equivalent radius  rB* has

been calculated in present study by taking stoichiometric composition of various elements at

‘B’ and atomic radius of each element.  The values of atomic radius for element under present

study  are  given  in  Table  2.  The  ratio  of  rA/  rB*  and  contraction  in  A-B  bond  has  been

calculated in the present study. Contraction in A-B bond has been calculated as given below:

Contraction = (rA + rB*) - (rA-B) ……………………….(6)

Where, (rA-B) = a/√3……………………….(7)

Graphs have been plotted among structural properties and hydrogen storage capacity for each

alloy and a relation has been established. 
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Table 1- Nomenclature of alloys

S.N. Name of alloy Composition of alloy

1 Alloy 1 LaNi4R (R= Al, Mn, Fe, Cu, Co, Cr)

2 Alloy 2 LaNi5-x-y-zAlxSnyFez

3 Alloy 3 La0.78Ce0.22Ni3.73Co0.30Al0.17Fe0.5-xSix 

(x = 0, 0.05, 0.075, 0.1)

 

Table 2- Atomic radius of elements using VWR Sargent Welch Periodic Table

S.N. Element Atomic Radius (Å)

1 La 2.74

2 Ce 2.70

3 Ni 1.62

4 Co 1.67

5 Mn 1.79

6 Fe 1.72

7 Si 1.46

8 Al 1.82

9 Cu 1.57

10 Cr 1.85

3. RESULTS AND DISCUSSIONS

Table 3 shows all the known and calculated parameters of alloy 1-LaNi4R hydride. 

Table 3- Known and calculated parameters of alloy 1 LaNi4R hydride [9,10]

S.N

. Alloy a (Å) c (Å) Unit

Cell

Volume

(Å3)

rB⃰

(Å)

rA /rB⃰

Contra-

ction 

in A-B 

Bond 

(Å)

Void 

size HI

(Å)

Void 

size HII

(Å)

Hydrogen

Storage 

Capacity 

(H/M)

1 LaNi5 5.017 3.986 86.28 1.62 1.691 1.46 0.37858 0.38312 6

2 LaNi4Co 5.018 3.981 86.2 1.63 1.681 1.473 0.37865 0.3832 4

3 LaNi4Cu 5.033 4.007 87.29 1.61 1.702 1.44 0.37979 0.38435 5

4 LaNi4Fe 5.049 4.015 88.02 1.64 1.671 1.46 0.38099 0.38557 5

5 LaNi4Cr 5.07 4.048 90.23 1.666 1.645 1.479 0.38258 0.38717 4

6 LaNi4Mn 5.089 4.082 90.91 1.654 1.657 1.454 0.38401 0.38862 6

7 LaNi4Al 5.061 4.07 89.65 1.66 1.651 1.478 0.3819 0.38648 4.5
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Table 3 shows that, in most of the cases hydrogen storage capacity decreases with increasing

value of lattice parameter, unit cell volume, void size,  rB ⃰  and contraction in A-B bond. rA/rB ⃰

shows opposite effect on hydrogen storage capacity. It may be mentioned here, that in LaNi4R

hydride  series,  all  of  the  substituted  elements  belongs  to  transition  element  except  Al.

Electronic properties of transition elements also affect the hydrogen storage capacity. But the

effect of electronic property on hydrogen storage capacity has not been studied in the present

investigation. The deviation in the trend may be due to negligence of electronic property. The

trend in hydrogen storage capacity is similar with unit cell volume, void size and rB ⃰. It may be

mentioned here, that unit cell volume is experimental value noted after synthesis of alloy,

whereas rB ⃰ is calculated value found without synthesis of alloy. In this way, rB ⃰ is playing the

same role as unit cell volume. Hence by calculating the value of rB ⃰, one can predict the trend

of hydrogen storage capacity without synthesis of the actual alloy. 

Similarly known and calculated parameters of Alloy 2:LaNi5-x-y-zAlxSnyFez  hydride are shown

in Table 4. This table shows no clear trend in variation of hydrogen storage capacity with

lattice parameters, unit cell volume and void size. However a clear trend in storage capacity

has been observed with  rB ⃰,  rA  /rB ⃰  and Contraction in A-B bond. Hydrogen storage capacity

decreases with increasing values of rB⃰, rA  /rB⃰ and Contraction in A-B bond. Figures1 and 2

show variation in storage capacity with unit cell volume and rB⃰ respectively.

Table 4- known and calculated parameters of Alloy 2:LaNi5-x-y-zAlxSnyFez hydride [11]

S.N. Alloy a (Å) c (Å) Unit 

Cell 

Volume

(Å3)

Void

size 

HI

(Å)

rB⃰

(Å)

rA /rB⃰ Contr-

action

in A-B

bond

(Å)

Hydroge

n Storage

Capacity

(H/M)

1 LaNi5

5.103

7

3.893

6

84.171

7 0.3783 1.62

1.691

4 1.465 6.43

2 LaNi4.8Sn0.1Al0.1

5.029

5

3.998

7

86.989

5 0.3795 1.623

1.688

4 1.459 6.45

3 LaNi4.6Fe0.2Al0.2

5.030

7

3.999

7

87.052

7 0.3796 1.632

1.678

9 1.467 6.3

4 LaNi4.8Sn0.2

5.033

2

4.010

7

87.378

9 0.3798 1.621

1.690

5 1.455 6.67

5 LaNi4.6Sn0.2Fe0.2

5.040

3

4.005

2

87.505

5 0.3803 1.628 1.683 1.458 6.37
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Figure 1- Variation in hydrogen storage capacity with unit cell volume for alloy 2.

Figure 2- Variation of hydrogen storage capacity with rB*for alloy 2.

Table 5 shows same data for alloy3: La0.78Ce0.22Ni3.73Co0.30Mn0.30Al0.17Fe0.5-xSix  multi-element

hydride. In this case, hydrogen capacity increases with increasing values of lattice parameters

and unit cell volume. However, a decrease in storage capacity has been noted with increasing

value of  rB ⃰  and contraction in  A-B bond. The variation in storage capacity  with unit  cell

volume and rB ⃰  is presented in Figures 3 and 4. 
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Table 5- known and calculated parameters of Alloy 3:

La0.78Ce0.22Ni3.73Co0.30Mn0.30Al0.17Fe0.5-xSix multi-element hydride [12]

S.N

. Alloy 

with

x

a (Å) c (Å) unit cell

volume

(Å3)

Void 

Size HI

(Å)

rB⃰

(Å)

rA /rB ⃰ Contr-

action

in A-B

bond

(Å)

Hydroge

n

Storage

Capacity

(H/M)

1 0 5.03
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Figure 3- variation of hydrogen storage capacity with unit cell volume for alloy 3.

 
Figure 4- variation of hydrogen storage capacity with rB* for alloy 3.
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4. CONCLUSIONS

From above discussion, it may be concluded that hydrogen storage capacity decreases with

increasing value of rB*in all the three alloys under study. It may also be concluded  that rB*,

rA/rB* and contraction in A-B bond are more correct value in comprison to lattice parameters

and  unit  cell  volume  for  prediction  of  storage  capacity. Since  unit  cell  volume  is  the

experimental  value,  structural  parameter  rB⃰  may  be  used  for  predicting  hydrogen storage

capacity without synthesis of the alloy. 
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Abstract: Light emitting diodes (LEDs) are an important part of our daily life, accounting for the  majority of

the world’s light source. Thus, the improvement of the efficiency of LEDs is essential.  The original GaN

nanowire LED with an ITO (indium tin oxide) electrode layer is more efficient than the traditional thin film.

However, this efficiency can be increased with the use of monolayer graphene as the electrode. Graphene’s

low resistivity decreases the operational temperature of the LED device.  This allows for more light to be

generated at a given temperature and for a smaller decrease in light intensity generated per degree of increase

in temperature. In this paper we report a systematic study of the characteristics of graphene as a transparent

current spreading layer in GaN nanorod LED. Our experimental results are analyzed in terms of the importance

of Shockley-Read-Hall, radiative, and Auger recombination rates occurring in each device. Data for graphene,

ITO and the normal thin films are graphed, modeled, and compared with an ABC model, demonstrating a

significant increase in IQE (internal quantum efficiency) from the ITO to the graphene device. 

Keywords: LED, GaN nanorod array, Graphene electrode

1. INTRODUCTION
Light-Emitting  Diodes  (LEDs)  have  become  an  important  light  source  due  to  their

increased efficiency over fluorescent and incandescent light bulbs. LEDs are devices constructed
from the combination of semiconductors. Going back to the basics, a semiconductor is a material
whose conductivity can be modulated through the introduction of impurities,  called dopants.
Inorganic semiconductors are crystals such as GaN, with energy bands for electrons. The highest
occupied energy band is called the valence band which is completely filled with electrons for an
undoped semiconductor, while the next band higher in energy is called the conduction band and
is  empty.  The  energy  difference  between  the  minimum  of  the  conduction  band  and  the
maximum of the valence band is called the bandgap of the semiconductor [1]. When there is an
electron in the conduction band and an empty state or hole in the valence band the electron may
combine with the hole and release the energy difference. This released energy can be in the form
of a photon producing light. 

LEDs  are  built  in  layers,  a  p-type  semiconductor,  an  n-type  semiconductor,  and  a
depletion zone in between, creating the p-n junction that comprises the LED. The p-type and n-
type semiconductors are created by doping existing semiconductors to either take away or add
electrons, allowing one side to carry a negative charge (n-type) and the other to carry a positive
charge (p-type). These semiconductors are combined so that under an electrical bias, electrons
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and  holes  flowing  in  opposite  directions  meet  in  the  p–n  junction  and  recombine  to  emit
photons [1]. 

Although silicon has been the favorite material for LEDs, in recent years GaN is turning
out to be more promising material. GaN has a bandgap (Eg) of 3.4 electron volts (eV), while
silicon's bandgap is only 1.1 eV. Since GaN has a bandgap that is nearly triple that of silicon,
one needs significantly more energy to excite a valence electron into the conduction band of
GaN. This limits GaN's usage in very low voltage applications (voltage required V=Eg/e), but
on the other hand it allows GaN to stand larger breakdown voltages and have better thermal
stability at higher temperatures[2]. Silicon is also an indirect band-gap semiconductor meaning
the recombination process between an electron and a hole is not direct, making it extremely
inefficient [3]. Furthermore, silicon has an electron mobility of 1500 cm2/Vs, while gallium
nitride has an electron mobility of 2000 cm2/Vs. Therefore, the electrons in GaN crystals can
move  over  ~  30% faster  than  in  Si  crystals.  This  electron  mobility  gives  GaN a  distinct
advantage as it can handle higher switching frequencies than silicon [2]. 

GaN nanowires in nanowire-LEDs are p-n junctions with the p-GaN on top and the n-
GaN on the bottom. In between, there are 10 layers of InGaN composing the multiple quantum
wells (MQWs) in the depletion zone. The InGaN allows its bandgap to be tuned by varying the
amount of indium in the alloy. InxGa1-xN has a direct bandgap which spans from the infrared
(0.69 eV) for InN to the ultraviolet (3.4 eV) for GaN [4, 5]. This allows GaN made devices to
cover the entire visible light spectrum. In general the GaN nanowire is 10-40 nm in diameter
while the maximum length is about 500 μm. In spite of the positive properties of GaN-basedm. In spite of the positive properties of GaN-based
nanowire  LEDs  discussed  above  there  is  a  major  problem.  These  devices  with  ITO  (or
conventional)  electrodes  have been known to suffer from poor Ohmic contact  and injection
current  distribution.  Contact  refers  to  the  metal-semiconductor  (MS)  junction  which  is
responsible for current injection from the metallic lead to the semiconducting device. An Ohmic
contact is a junction between two conductors that has a linear current-voltage (I-V) curve as with
Ohm's  law.  In  LEDs  Ohmic  contact  is  preferred  as  non-Ohmic  contact  has  higher  contact
resistance  (leading  to  large  energy  loss)  which  can  result  in  less  light  production  overall.
Graphene electrodes show a better Ohmic contact characteristic than the ITO or conventional
electrodes. 

Graphene is an allotrope of carbon in the form of a single layer of atoms in a two-
dimensional  hexagonal  lattice  in  which  one  atom  forms  each  vertex.  It  can  also  be
considered as an indefinitely large aromatic molecule. Graphene has many unique properties,
most notably is its high thermal and electrical conductivities and optical transparency. In this
research, we mainly focus on Graphene’s low resistivity as a means to decrease the overall
operating temperature of a nanowire LED [6]. 

In  this  paper,  I  present  the  schematic  drawing  of  the  device  and  the  nanowire.
Additionally, I present the experimental data measuring the voltage and current across the ITO
and graphene devices. The steeper graphene curve indicates that it has a smaller resistance. 
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This means less input energy is wasted during the current injection, therefore, more input energy
contributes to the electron-photon conversion processes resulting in graphene having a higher
efficiency. A high contact resistance can also lead to high junction temperature,  as the input
energy can either be converted to light (photon) or heat. A high junction temperature leads to
decrease of the efficiency as it makes value A and C increase. (see below for the definition of A
and C values)

Next,  using  the  experimental  measurements  of  the  IQE values  as  a  function  of  the
current density for thin film LED, ITO electrode LED and graphene electrode LED, I fit the
parameters of the ABC model (see below) of each device. The fitted curves using this model
give the values  of  the  three parameters  A, B, and C for  each device (see Table).  Finally  I
analyze and compare the A, B, and C values of the three separate devices to provide evidence
that the graphene layer increases the overall performance of the device. 

2. THEORETICAL MODELING

To ascertain the efficiency of any photosensitive device such as an LED one must look at the
internal quantum efficiency (IQE). IQE relates the number of photons generated in the active
region  and  the  number  of  electrons  injected  into  the  LED.  The  IQE measures  the  ratio  of
electron-hole recombination that results in a photon to the total amount of recombination [7].
The IQE of the device can be described by the equation, 

                                                            IQE=
B N2

AN+B N2+C N3
 ,

where N represents the carrier density of the LEDs, A and C are the Shockley-Read-Hall (SRH)
and Auger recombination rates respectively, and B represents the radiative recombination rate [8,
9]. Recombination of electrons and holes is a process by which electrons and holes annihilate
each other: electrons fill up - through one or multiple steps - the empty state associated with a
hole [10]. Both electrons and holes eventually disappear in this process. The energy difference
between  the  initial  and  final  state  of  the  electron  is  released.  In  the  case  of  radiative
recombination, this energy is released as a photon. In other recombination processes the energy
is essentially lost as heat. As temperature increases the values of A and C increase whereas the
value  of  B  decreases,  causing  a  drop  in  the  IQE.  This  leads  to  the  deterioration  of  the
performance of the LED device with increasing temperature. 

3. METHODS AND MATERIALS

Different nanowire LED samples were fabricated. Fig. 1 is a model of the device. The
device is built upon a substrate made out of sapphire and where GaN nanowires are placed on
GaN. On top of the layer of nanowires is a graphene layer that allows light to pass through. 
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On top of the graphene layer is the p-type semiconductor while on the GaN layer is the n-
type semiconductor. Fig. 2 shows the measured I-V curves at room temperature and Fig. 3 gives
IQE (same as EQE in the figure) vs the carrier density. It can be seen that samples with graphene
electrodes appear to have a lower contact resistance than the one with conventional ITO and
films. Figure 3 shows the fit of the ABC model to the measured IQE values for the graphene,
ITO and thin film devices. A comparison of the theoretical ABC model with experimental data
shows that there is a good fit, particularly at high current densities. The values of parameters A,
B, C obtained by fitting the experimental data are given in Table 1. The fabrication process of
this device will be published in a separate paper. 

                                 

Figure 1: The schematic of a nanorod LED with graphene electrode as a current spreading electrode. Also

shown is the illustration of the designs of a single nanorod LED.

Table

Sample A B C

Thin Film 5.71E8 2.00E-11 6.91E-29

ITO 1.15E8 9.81E-10 6.51E-29

Graphene 7.91E7 9.95E-10 1.335E-29

Student Journal of Physics,Vol. 8, No. 2, 2020     81



4. RESULTS AND DISCUSSION

By comparing  the  A,  B,  and C values  for  the  three types  of  devices  we observe an
increase in  the B values  and a  decrease in the A and C values  as we go from thin film to
graphene.  This  is  due  to  the  increase  in  the  radiative  recombination  process  caused by less
structural defects and a decrease in the polarization-induced electric  field of the device.  The
polarization-induced electric field is known to cause efficiency drops due to its increase of the
electron leakage in MQWs. The decreasing of this polarization caused by less strain from the
nanowires therefore leads to more radiative recombination.[11] The decrease in the A and C
values implies a decrease in the trap-recombination and auger recombination respectively. 

Although our measurements are done at 300 K we can make some qualitative remarks on
the effect  of temperature  on the relative  importance of the three recombination  rates.  In an
intrinsic  semiconductor  when  temperature  is  increased  the  number  of  thermally  excited
electrons  in  the  conduction  band and holes  in  the  valence  band increases.  [12].  As  carrier
concentration increases the cubic dependence (the C term) associated with the Auger process
becomes more prominent causing a large efficiency drop. The ratio of BN2/CN3 will reduce to B/
CN thus decreasing the IQE as there is less radiative recombination per total recombination. As
observed, the curves representing the thin films, nanowires, and graphene the drop becomes less
evident  as  you progress  to  the  latter.  This  demonstrates  that  graphene has  the  highest  IQE
overall along with the lowest efficiency drop due to its high B value and small A, C values.
These results can also be viewed in the graph comparing thin film, ITO and graphene (Figure 3)
where graphene has the highest curve with the smallest drop. 

Figure 2: Measured Room temperature I-V characteristics of GaN nanorod LEDs with ITO and grapheme
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A change  in  temperature  also  affects  the  voltage  at  the  diode.  As  the  temperature
increases,  the  carrier  concentration  increases.  The  increase  in  energy  from the  increase  in
temperature allows more electrons to cross the band gap, going from the valence band to the
conduction band and leaving behind a hole. The intrinsic carrier concentration being the number
of electrons in the conduction band, thus increases. 

We next discuss qualitatively the reason behind the change in voltage. The fermi level is
defined as the probability for occupancy of an electron above or below the energy level. The
probability of finding an electron above the fermi level is the same as the probability of not
finding an electron below. In an n-type semiconductor the number of electrons in the conduction
band is greater than the number of holes in the valence band, due to doping. This results in a
fermi  level  that  is  closer  to  the  conduction  band.  With  the  increase  in  intrinsic  carrier
concentration  due  to  the  increase  in  temperature,  in  the  n-type  semiconductor  the  intrinsic
carriers will dominate the donors. To maintain the balance of the carrier density on both sides
the fermi level in the n-type will gradually shift downwards, towards the intrinsic fermi level in
the middle of the bandgap. Similarly in the p-type as temperature increases the fermi level will
shift from the valence band towards the middle of the band gap. Since the built-in potential of a
diode is determined by the difference in fermi-levels in the p-type and n-type regions, as the
fermi  level  in  each region  moves  closer  to  the  middle  of  the  gap,  the  built-on  potential  is
decreased. As this potential decreases the voltage across the device also decreases. As voltage
and current are directly proportional, this will result in a decrease in current. This results in a
decrease in the charge carriers in the active region, which results in less radiative recombination
meaning a decrease in efficiency and light production overall [10]. 

Finally, the power P generated in a device of resistance R and current I is P = I 2R. This
means a decrease in the current decreases the power output of the device. Overall, Graphene is
shown to be an effective solution to decrease the operational temperatures of the devices. Due
to its low resistivity graphene will generate less heat, leading to a slower increase in operational
temperature  in  addition  to  having  an  operational  temperature  lower  than  that  of  the  ITO.
Graphene’s greater current given an applied voltage, in comparison to the ITO can be observed
in Figure 2. [13] 

  

Figure 3: Measured EQE and simulated IQE for samples with different types of electrodes.
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