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Abstract. In this article we first write a brief review of supersymmetric quantum mechanics and then we
discuss the equivalence of two co-existing formalisms viz. tensor product formalism and partner hamiltonian
formalism for 1-D SUSY harmonic oscillator. We also present a Mathematica code with which one can calcu-
late the eigenstates of any 1-D SUSY partner Hamiltonian along with two illustrated examples of 1-D SUSY
harmonic oscillator and 1-D SUSY infinite potential box. Then we calculate the SUSY partner wave function
for 1-D anharmonic oscillator using this code and plot first few of them. Finally, we give an example how the
supersymmetric partner potentials can be calculated starting from a well-behaved ground state wave function 1.
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1. SUPERSYMMERIC QUANTUM MECHANICS

The promising idea of supersymmetry in physics started becoming the point of attraction in the late
twenties. The main idea here is to consider a broader picture of the standard model in particle physics
by considering bosons and fermions in the same footing. This idea has the potential of solving many
problems beyond standard model and in order to that it brought a new kind of symmetry into the
picture. This new symmetry allows one to interchange between two seemingly very different kind of
particles, bosons and fermions and it brings a new conserved quantity with it namely supercharge.
The simplest case of SUSY quantum mechanics is 1D SUSY harmonic oscillator. There exists
two parallel formalisms [5][3] for this system in the literature and both of them solve the problem
uniquely. In this article we will discuss about how both of these formalisms are deeply related and
will point out the equivalence of these two formalisms. At last we will also provide a Mathematica
code to calculate and plot the eigenfunction of 1D supersymmetric partner Hamiltonian and present
three examples of 1-D harmonic oscillator, 1-D infinite potential well and 1-d inverted harmonic
oscillator with an anharmonic term αx6.
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2. A BRIEF REVIEW OF TWO FORMALISMS FOR SUSY HARMONIC OSCILLATOR

Bosonic and fermionic harmonic oscillators are main building block of many physical theories.
However, there is a mojor difference between the behaviour of these two particles[2]. By definition,
bosons have integeral spin and fermions have half integeral spin. Moreover, according to Pauli ex-
clusion principle no two identical fermions can occupy the same state but there is no such constraint
for bosons. Also, we know that under the exchange of two identical fermions the wave function
describing the state of these two particles takes up a minus sign but if we exchange two bosons no
such minus sign appears in the wave function.
Now, to bring the bosonic and fermionic particles in the same footing ‘supersymmetry’ plays a cru-
cial role and to incorporate them in a single frame one needs to build a common Hilbert space for
both of them. There are mainly two ways of constructing the Hilbert space of this system that yield
two different formalisms.

2.1 Tensor product formalism

The bosonic harmonic oscillator resides in a Hilbert space,HB that isL2(R) in nature and the Hilbert
space of fermionic harmonic oscillator,HF is a C2 space. The ladder operators of bosonic harmonic
oscillator are defined by their commutator relations and the ladder operator of fermionic harmonic
oscillator are defined by their anti-commutator relation. Now one of the ways to construct the Hilbert
space of SUSY harmonic oscillator is by going to a tensor product space of these two systems as

HS = HB ⊗HF . (1)

The basis of this Hilbert space is defined as

|n〉S = |n〉B ⊗ |n〉F ,

where |n〉B and |n〉F are the number state basis of bosonic and fermionic harmonic oscillators
respectively. An operator in this Hilbert space is defined as

O1 ⊗O2 : HB ⊗HF −→ HB ⊗HF . (2)

The Hamiltonian of the bosonic harmonic oscillator can be written as

HB = ~ωB

(
a†a+

1

2

)
, (3)

where a† and a are respectively annihilation and creation operators defined as

a† =
1√

2m~ωB

(−ip+mωBx) (4)

a =
1√

2m~ωB

(ip+mωBx) . (5)
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The commutation relation between them is given by[
a, a†

]
= 1, [a, a] = 0,

[
a†, a†

]
= 0, (6)

and NB = a†a is the bosonic number operator. This operator acting on the n-th number state gives
the number of bosonic particles of that particular state as the eigenvalue.

NB |n〉B = nB |n〉B , nB = 0, 1, 2, .. (7)

The energy eigenvalue equation for the above state can be written as

HB |n〉B = EnB
|n〉B =

(
nB +

1

2

)
~ω|n〉B . (8)

The operation of the creation and annihilation operators on the number states is given by

a†|n〉B =
√
nB + 1|n+ 1〉B (9)

a|n〉B =
√
nB |n− 1〉B . (10)

On the other hand the Hamiltonian of fermionic harmonic oscillator is given by

HF = ~ωF

(
c†c− 1

2

)
, (11)

where c and c† are respectively the fermionic annihilation and creation operator that satisfy the
anti-commutation relation as

{c, c†} = 1, {c†, c†} = 0, {c, c} = 0. (12)

The fermionic number operator is similarly defined as

NF = c†c, (13)

which acts on the n-th fermionic number state as

NF |n〉F = nF |n〉F , nF = 0, 1. (14)

The energy eigen value equation for this state would be written as

HF |n〉F = EnF
|n〉F =

(
nF −

1

2

)
~ω|n〉F . (15)

One property of fermionic creation and annihilation operators is that due to their anti-commutation
relations, they are nilpotent of order 2 which means

{c†, c†}|n〉F = 0 (16)(
c†c† + c†c†

)
|n〉F = 0

c†c†|n〉F = −c†c†|n〉F
c†c†|n〉F = 0. (17)
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Similarly for the annihilation operator

cc|n〉F = 0, (18)

which only leaves two possible state in the fermionic ladder namely |0〉 and |1〉 that satisfies

c|0〉 = 0 & c†|1〉 = 0. (19)

Now we construct the Hilbert space of the joint system as of Eq.1 and keeping in mind the form of
the operators in this Hilbert space as of Eq.2 we write the Hamiltonian of the Hilbert space of SUSY
harmonic oscillator as

HS = HB ⊗ IF + IB ⊗HB (20)

= ~ωB

(
a†a+

1

2

)
⊗ IF + IB ⊗

(
c†c− 1

2

)
~ωF , (21)

where IB and IF are the identities of bosonic and fermionic Hilbert spaces respectively. By using
the number operator of respective spaces the energy eigenspectrum of the Hilbert space of SUSY
harmonic oscillator becomes

E = EB + EF =

(
nB +

1

2

)
~ωB +

(
nF −

1

2

)
~ωF . (22)

Likewise, We can define the number operator of this SUSY harmonic oscillator as

NS = NB ⊗ IF + IB ⊗NF . (23)

We now come to the main part of the supersymmetry and define an operator Q called Supercharge
and its conjugate Q† as

Q = a⊗ c† and Q† = a† ⊗ c. (24)

These two operators acting on the number state of the Hilbert SpaceHS yield

Q†|n〉S =
(
a† ⊗ c

)
|n〉B ⊗ |n〉F = |n+ 1〉B ⊗ |n− 1〉F (25)

Q|n〉S =
(
a⊗ c†

)
|n〉B ⊗ |n〉F = |n− 1〉B ⊗ |n+ 1〉F . (26)

These operators change one fermion to one boson and vice versa. So these two operators are called
the generators of the supersymmetry. Now in Eq.1 if we take a simplifying assumption that ωB =

ωF = ω, HS takes the form

HS = ~ω
((

a†a+
1

2

)
⊗ IF + IB ⊗

(
c†c− 1

2

))
HS = ~ω

(
a†a⊗ IF + IB ⊗ c†c

)
. (27)
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Now it can be very easily shown that Q† and Q commutes with HS i.e.

[HS , Q] =
[
HS , Q

†] = 0. (28)

This implies that the system posses symmetry under the exchange of bosons and fermions and
the supercharge is also a conserved quantity. Q and Q† also obey the following anti-commutator
relations

{Q,Q†} = HS , {Q,Q} = 0 and {Q†, Q†} = 0. (29)

2.2 Super-Potential Formalism

This is a more general formalism and can handle various 1D SUSY systems unlike the tensor product
formalism. Here the trick is also to factorise the Hamiltonian. We begin with 1D time independent
Schrodinger’s equation of the system of our interest as

H1ψ
(n)
1 =

(
− ~2

2m

d2

dx2
+ V1(x)

)
ψ
(n)
1 = E

(n)
1 ψ

(n)
1 (30)

where E(n)
1 and ψ(n)

1 are the nth eigenvalue and eigenfunction of H1. Therefore, we can express the
potential in terms of the ground state eigenfunction and eigenvalue as

V1(x) =
~2

2m

1

ψ
(0)
1 (x)

d2ψ
(0)
1

dx2
+ E

(0)
1 (31)

Now by defining H1 − E(0)
1 as HB we can write it as

H1 − E(0)
1 = HB (32)

= − ~2

2m

d2

dx2
+

~2

2m

1

ψ
(0)
1 (x)

d2ψ
(0)
1

dx2
(33)

= − ~2

2m

d2

dx2
+ VB , where VB =

~2

2m

1

ψ
(0)
1 (x)

d2ψ
(0)
1

dx2
. (34)

At this point we introduce two operators A and A† in the following manner

A† = − ~√
2m

d

dx
+W (x)

A =
~√
2m

d

dx
+W (x), (35)

where W (x) is known as Superpotential. With a little algebra we get

A†A = − ~2

2m

d2

dx2
− ~√

2m
W ′(x) +W 2(x). (36)
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We can therefore factorise the Hamiltonian HB as

HB = A†A, (37)

with the identification

VB = W 2(x)− ~√
2m

W ′(x) = V1 − E(0)
1 . (38)

We denote the eigenvalues and eigenfunction of HB as E(n)
B and ψ(n)

B respectively. Note that ψ(n)
B

and ψ(n)
1 are same and the eigenvalues E(n)

B are different from E
(n)
1 by a constant shift of E(0)

1 .
Now comes the SUSY part and we define what we call “Partner Hamiltonian” of HB as

HF = AA†. (39)

Using definition of A and A† from Eq.35 we can write this equation as

HF = − ~2

2m

d2

dx2
+ VF (x) (40)

where, VF (x) = W 2(x) +
~√
2m

W ′(x). (41)

We can denote the nth eigenvalue and eigenfunction of HF as E(n)
F and ψ(n)

F . These states posses
some beautiful relations which will be very useful later. Note that using Eq.37 and Eq.39 we get

HB{A†ψ(n)
F (x)} = A†HFψ

(n)
F (x) = E

(n)
F {A

†ψ
(n)
F (x)} (42)

HF {Aψ(n)
B (x)} = AHBψ

(n)
B (x) = E

(n)
B {Aψ

(n)
B (x)} (43)

This shows that A†ψ(n)
F (x) is an eigenstate of HB and Aψ(n)

B (x) is an eigenstate of HF . So A† and
A are intertwining operators that link the eigenstates of the two partner Hamiltonians HB and HF .
With little algebra it can be shown that

ψ
(n)
F =

(
E

(n+1)
B

)−1/2
Aψ

(n+1)
B (44)

ψ
(n+1)
B =

(
E

(n)
F

)−1/2
A†ψ

(n)
F (45)

E
(n)
F = E

(n+1)
B (46)

Now in this formalism to show the supersymmetric invariance of the system we go to direct sum
space of HB and HF where Hamiltonian HB belongs to HB Hilbert space and Hamiltonian HF

belongs toHF Hilbert space. So, we define the new Hilbert space and the Hamiltonian as

HS = HB ⊕HF and (47)

HS =

(
HB 0

0 HF

)
(48)
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and the super charge operator and its conjugate as

Q =

(
0 0

A 0

)
and Q† =

(
0 A†

0 0

)
. (49)

Now it is easy to show that these operators follow the same commutation and anti-commutation
rules as of Eq.28 and Eq.29. We can write the SUSY wave function as

ψ
(n)
S =

(
ψ
(n)
B

ψ
(n)
F

)
(50)

but note that this is not an eigenstate of HS due to Eq.46. We shall have to take the state as

ψ
(n)
S =

(
ψ
(n)
B

ψ
(n−1)
F

)
(51)

to make it an eigenstate of HS . Now at this point the two formalisms seem to be using different
techniques to deal with the problem of SUSY harmonic oscillator. So, in the next section we would
like to discuss and illustrate how they are related and how the partner eigenstates are related to the
number state of tensor product formalism.

3. EQUIVALENCE OF TENSOR PRODUCT AND PARTNER HAMILTONIAN FORMAL-
ISM FOR 1-D SUSY HARMONIC OSCILLATOR

To understand the equivalence of these two formalisms we have to first understand what ψ(n)
F and

ψ
(n)
B means physically. A system is called fermionic when the total spin of the system is half integral

and we note that in 1-D harmonic oscillator the number of bosons can range from 0 to any large value
but the number of fermion can be either 0 or 1. From Eq.32 we see that for 1-D harmonic oscillator
ψ
(n)
B has energy eigenvalue

E
(n)
B = E

(n)
1 − E(0)

1 = n~ω. (52)

This directly implies that there are total n bosons and 0 fermions in this state which is equivalent to
|n〉⊗ |0〉 state of tensor product formalism or the nth bosonic excitation state of SUSY Hamiltonian
of tensor product space. The fermionic partner Hamiltonian state ψ(n)

F refers a state where we have
n bosons and 1 fermion making the total spin half integral and hence it is equivalent to the |n〉 ⊗ |1〉
state of tensor product formalism. By this comparison we can see clear physical meaning of Eq.46.
From Eq.52 and Eq.46 we get E(n)

F = (n + 1)~ω. Using this idea of equivalence we can find it to
be trivial that ψ(n)

F is a state containing n+1 particles and therefore, its energy is same as the energy
of |n〉 ⊗ |1〉 state. From Eq.44 and Eq.45 we can now understand the operation of A and A† on the
partner eigenstates more clearly that they respectively create a fermion by destroying a boson and
vice versa. This property was not that clear from equation 35. The normalisation constant of Eq.44
and Eq.45 can be calculated very easily. To derive Eq.44, Let us assume that

ψ
(n)
F = c1Aψ

(n+1)
B (53)
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where c1 is the normalisation constant then by taking inner products we get

1 = c21〈ψ
(n+1)
B |A†A|ψ(n+1)

B 〉 (54)

= c21〈ψ
(n+1)
B |HB |ψ(n+1)

B 〉 (55)

= c21E
(n+1)
B (56)

or,c1 =
(
E

(n+1)
B

)−1/2
(57)

we can do this similarly for Eq.45. Now we present a schematic diagram for visualising the connec-
tions between these formalisms and their corresponding states and energies.

Figure 1. Schematic diagram of equivalence of tensor product and partner Hamiltonian
formalism

In the partner Hamiltonian formalism the ground state is a bit special as there is no fermionic
partner eigenstate for this and the ground state of SUSY harmonic oscillator is bosonic. In the
diagram we have a pair of black vertical lines. The nodes on the left one of them represents the
bosonic states whereas the nodes on the right one denotes the fermionic states and these states are
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equidistant, marked by their corresponding level of excitation.
Here we give a table showing the equivalence of states of the two formalisms and their corresponding
positions marked in the diagram. All the arrows represent the necessary operators for going from
one state to another one.

Point in the diagram Cor. TP state Eqv. PH wave fn. E of the state nB of the state nF of the state

0B |0〉B ⊗ |0〉F ψ
(0)
B 0 0 0

0F |0〉B ⊗ |1〉F ψ
(0)
F ~ω 0 1

1B |1〉B ⊗ |0〉F ψ
(1)
B ~ω 1 0

1F |1〉B ⊗ |1〉F ψ
(1)
F 2~ω 1 1

2B |2〉B ⊗ |0〉F ψ
(2)
B 2~ω 2 0

2F |2〉B ⊗ |1〉F ψ
(2)
F 3~ω 2 1

3B |3〉B ⊗ |0〉F ψ
(3)
B 3~ω 3 0

(n-2) F |n− 2〉B ⊗ |1〉F ψ
(n−2)
F (n− 1)~ω n-2 1

(n-1)B |n− 1〉B ⊗ |0〉F ψ
(n−1)
B (n− 1)~ω n-1 0

(n-1) F |n− 1〉B ⊗ |1〉F ψ
(n−1)
F n~ω n-1 1

n B |n〉B ⊗ |0〉F ψ
(n)
B n~ω n 0

n F |n〉B ⊗ |1〉F ψ
(n)
F (n+ 1)~ω n 1

(n+1) B |n+ 1〉B ⊗ |0〉F ψ
(n+1)
B (n+ 1)~ω n+1 0

Cor., Corresponding; TP, Tensor Product; Eqv., Equivalent; PH, Partner Hamiltonian;
fn, function; E, Energy; nB , number of bosons; nF , number of fermions;

Table 1. Table of equivalence

So we note that the index ‘n’ in partner Hamiltonian formalism irrespective of ψB or ψF rep-
resents the number of bosons in that state. Now as A destroys a boson and creates a fermion, for the
bosonic ground state we can write

Aψ
(0)
B (x) = 0. (58)

This implies, W (x) = − ~√
2m

1

ψ
(0)
B

dψ
(0)
B

dx
(59)

= − ~√
2m

dln
(
ψ
(0)
B

)
dx

. (60)

So, this equation completes the calculation of SUSY wave function for 1D cases as using equations
35, 44, 46, 60 we can calculate the partner wave functions of any 1-D SUSY quantum mechanical
system as we show in the next section.
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4. CALCULATION OF SUSY PARTNER WAVE FUNCTIONS FOR 1-D SUSY HARMONIC
OSCILLATOR

In this section we calculate the eigenfunction of the fermionic Hamiltonian HF . Now for 1-D
harmonic oscillator we know that

H1ψ
(n)
1 =

(
− ~2

2m

d2

dx2
+

1

2
mω2x2

)
ψ
(n)
1 = E

(1)
1 ψ

(n)
1 . (61)

The eigenfunction and and the energy eigenvalues are given by

ψ
(n)
1 =

(mω
π~

)1/4 1√
2nn!

exp
(
−mω

2~
x2
)
Hn

[(mω
~

)1/2
x

]
(62)

where, Hn(x) are Hermite polynomials and

E
(n)
1 =

(
n+

1

2

)
~ω. (63)

So, as we have discussed earlier that ψ(n)
1 = ψ

(n)
B and E(n)

B = n~ω. The ground state wave function
of ψ(n)

B and its derivative is given by

ψ
(0)
B =

(mω
π~

)1/4
exp

(
−mω

2~
x2
)

and
d

dx
ψ
(0)
B = −xmω

~
ψ
(0)
B . (64)

From Eq.60 we get

W (x) =
~√
2m

mω

~
x =

√
m

2
ωx. (65)

So, now from Eq.41 we can write

VF (x) =
mω2

2
x2 +

1

2
~ω, (66)

and from Eq.46 we get

E
(n)
F = (n+ 1)~ω. (67)

Now, from Eq.44 and Eq.35 we can write the form of eigenstate of HF as

ψ
(n)
F =

1√
E

(n+1)
B

Aψ
(n+1)
B (68)

=
1√

(n+ 1)~ω

(
~√
2m

d

dx
+W (x)

)(
N exp

(
−mωx

2

2~

)
Hn

[(mω
~

)1/2
x

])
,

(69)

where N is the corresponding normalisation constant.
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Now after doing the simplification we get

ψ
(n)
F =

(mω
π~

)1/4 1√
2nn!

exp
(
−mω

2~
x2
)
Hn

[(mω
~

)1/2
x

]
. (70)

We see that the form of eigenfunctions are same for HB and HF in the case of 1-D SUSY harmonic
oscillator which is a well known example of shape invariant potential [1] in supersymmetric quantum
mechanics.

5. MATHEMATICA CODE

In this section we present a Mathematica code using which one can calculate the eigenfunctions of
HB and HF for any 1-D SUSY quantum mechanical system. The plots of the eigenfunctions have
been made in two different ways. Firstly, we have used the superpotential formalism in order to
obtain ψ(n)

F from ψ
(n)
B as shown in previous section. Secondly, we have used the analytical solution

of the partner eigenfunction to plot it.The first method is a more general numerical way of obtaining
the supersysmmetric partner eigenfunction even for the cases when it is hard to solve the schrodinger
equation of the system analytically.
We can observe that the plot of the wavefunctions made in two different ways matches perfectly.

SUSY 1 - D Harmonic Oscillator

In[ ]:= Clear["Global`*"];

◼ Value of the Parameters : -

In[ ]:= ℏ = 1; m =
1

2
; ω = 1;

◼ Potential : -

In[ ]:= V1[x_] :=
1

2
m ω^2 x^2;
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◼ Hamiltonian : -

In[ ]:= H1 = -
ℏ^2

2 m
* u''[x] + V1[x]* u[x];

◼ Obtaining Eigenvalues and Eigenfunctions (Ground State to 5th Excited State) of 1 D 
Harmonic Oscillator : -

In[ ]:= {Eigenvalue, Eigenfunction} = NDEigensystem[H1, u[x], {x, -100, 100}, 6,

Method →

{"SpatialDiscretization" ->

{"FiniteElement", {"MeshOptions" -> {"MaxCellMeasure" -> 0.01}}}}];

Out[ ]=

-10 -5 5 10

-0.6

-0.4

-0.2

0.2

0.4

0.6

label
Ground state

1st Excited state

2nd Excited state

3rd Excited state

4th Excited state

5th Excited state

Figure 2. Numerical plots of the first 6 eigenstates of bosonic HO hamiltonian

◼ Defining : -

In[ ]:= E1[n_] := Eigenvalue[[n]];

NOTE : Array indexing starts from 1 in Mathematica. So n = 1 is the Ground State in 
this case.
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◼ Energy Eigenvalue and Eigenfunction of Bosonic Hamiltonian HB : -

In[ ]:= EB[n_] := E1[n] - E1[1];

ψB[n_] := Eigenfunction[[n]];

◼ Superpotential : -

In[ ]:= W = -ψB[1]^(-1)* D[ψB[1], x];

◼ Fermionic Eigenfunction or

Eigenfunction of the Partner Hamiltonian(HF) : -

◼ ψF
(n) = EB

(n+1)-
1
2

ℏ
√2 m

d

dx
+ W (x) ψB

(n+1)

In[ ]:= ψF[n_] := (EB[n + 1])^-
1

2
*

ℏ
√(2 m)

D[ψB[n + 1], x] + W*ψB[n + 1]

Out[ ]= -10 -5 5 10

-0.6

-0.4

-0.2

0.2

0.4

0.6

label
Ground state

1st Excited state

2nd Excited state

3rd Excited state

4th Excited state

Figure 3. Numerical plots of the first 5 eigenstates of fermionic HO hamiltonian

The Analytic Solution of the Partner Hamiltonian 
Eigenfunction : -
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◼ Parameters : -

In[ ]:= m =
1

2
; ω = 1; ℏ = 1;

Now by using the form of Eq. 70 we define,

In[ ]:= ϕF[n_, x_] := 
m*ω

π
^

1

4


1
√(2^n n!)

Exp-
(m*ω)

2 ℏ
x^2 HermiteHn, 

m*ω

ℏ
^

1

2
 x

Out[ ]=

-10 -5 5 10

-0.6

-0.4

-0.2

0.2

0.4

0.6

label
Ground state

1st Excited state

2nd Excited state

3rd Excited state

4th Excited state

Figure 4. Plots of the first 5 analytical solutions of HO eigenstates

NB : The plots of ψF and ϕF are same apart from a random sign

flip. This sign is actually inherited from the method that

Mathematica uses for solving the differential equations. However

it doesn' t matter because if ψF is an eigenfunction of HF then

(-ψF) is also an eigenfunction of HF with the same eigenvalue.

Changing the value of the potential V1(x) we can plot the partner eigenfunction for any 1D
SUSY Quantum System. Below we are showing the same thing for an 1D Infinite Potential Box.
For the analytic solution we have considered the form of the partner eigenfunction as given in [4].

SUSY 1 D InfinitePotential Box

◼ Values of the Parameters : -

In[ ]:= ℏ = 1; m =
1

2
;
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◼ Potential : -

In[ ]:= V1[x_] := 0;

◼ Hamiltonian : -

In[ ]:= H1 = -
ℏ^2

2 m
* u''[x] + V1[x]* u[x];

◼ Boundary Condition : -

In[ ]:= B = DirichletCondition[u[x] ⩵ 0, True];

◼ Obtaining Eigenvalues and Eigenfunctions(Ground State to 5th Excited State) of 1D Infinite Potential 
Box :-

In[ ]:= {Eigenvalue, Eigenfunction} = NDEigensystem[{H1, B}, u[x], {x, 0, 1}, 6,

Method → {"Eigensystem" → {"Arnoldi",

"MaxIterations" → 10 000},

"PDEDiscretization" → {"FiniteElement", "MeshOptions" → {"MaxCellMeasure" → 0.001}}}];

Out[ ]=

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

label
Ground state

1st Excited state

2nd Excited state

3rd Excited state

4th Excited state

5th Excited state

Figure 5. Numerical plots of the first 6 eigenstates of bosonic HO hamiltonian

Student Journal of Physics,Vol. 8, No. 3, 2021 107



Defining:-

In[ ]:= E1[n_] := Eigenvalue[[n]];

◼ Energy Eigenvalue and Eigenfunction of Bosonic Hamiltonian HB : -

In[ ]:= EB[n_] := E1[n] - E1[1];

ψB[n_] := Eigenfunction[[n]];

◼ Superpotential : -

In[ ]:= W = -ψB[1]^(-1)* D[ψB[1], x];

◼ Fermionic Eigenfunction or

Eigenfunction of the Partner Hamiltonian(HF) : -

◼ ψF
(n) = EB

(n+1)-
1
2

ℏ
√2 m

d

dx
+ W (x) ψB

(n+1)

In[ ]:= ψF[n_] := (EB[n + 1])^-
1

2
*

ℏ
√(2 m)

D[ψB[n + 1], x] + W*ψB[n + 1]

Out[ ]=
0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

label
Ground state

1st Excited state

2nd Excited state

3rd Excited state

4th Excited state

Figure 6. Numerical plots of the first 5 eigenstates of fermionic 1-D inf. pot. box
hamiltonian
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The Analytic Solution of the Partner Hamiltonian 
Eigenfunction : -

◼ Parameter : -

In[ ]:= L = 1;

In[ ]:= ϕF[n_, x_] := 
2

L ((n + 2)^2 - 1)
(n + 2)* Cos(n + 2)

π

L
x - Cot 

π

L
x * Sin (n + 2)

π

L
x

Out[ ]=
0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

label
Ground state

1st Excited state

2nd Excited state

3rd Excited state

4th Excited state

Figure 7. Plots of the first 5 analytical solutions of 1-D inf. pot. box hamiltonian
eigenstates

Now we present the results for a case which can not be studied analytically without perturbation
theory, the inverted harmonic oscillator. Here we have used the following form of potential;

V1(x) = −1

2
mω2x2 + αx6 (71)

Using this code we can very easily calculate its partner wave function numerically. We have here
plotted only first few of them.

SUSY 1 - D Anharmonic Oscillator

◼ Value of the Parameters : -

In[ ]:= ℏ = 1; m =
1

2
; ω = 1; α = 1;

Student Journal of Physics,Vol. 8, No. 3, 2021 109



◼ Potential : -

In[ ]:= V1[x_] := -
1

2
m ω^2 x^2 + α x^6;

◼ Hamiltonian : -

In[ ]:= H1 = -
ℏ^2

2 m
* u''[x] + V1[x]* u[x];

◼ Obtaining Eigenvalues and Eigenfunctions (Ground State to 3rd 
Excited State) of 1D Harmonic Oscillator : -

In[ ]:= {Eigenvalue, Eigenfunction} =

NDEigensystem[H1, u[x], {x, -100, 100}, 4,

Method →

{"SpatialDiscretization" ->

{"FiniteElement", {"MeshOptions" -> {"MaxCellMeasure" -> 0.01}}}}];

Out[ ]=

-3 -2 -1 1 2 3

-0.5

0.5

label
Ground state

1st Excited state

2nd Excited state

3rd Excited state

Figure 8. Numerical plots of the first 4 eigenstates of bosonic AHO hamiltonian

◼ Defining : -

In[ ]:= E1[n_] := Eigenvalue[[n]];
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NOTE : Array indexing starts from 1 in Mathematica. So n = 1 is the 
Ground State in this case.

◼ Energy Eigenvalue and

Eigenfunction of Bosonic Hamiltonian HB : -

In[ ]:= EB[n_] := E1[n] - E1[1];

ψB[n_] := Eigenfunction[[n]];

◼ Superpotential : -

In[ ]:= W = -ψB[1]^(-1)* D[ψB[1], x];

◼ Fermionic Eigenfunction or Eigenfunction

of the Partner Hamiltonian(HF) : -

◼ ψF
(n) = EB

(n+1)
-
1
2

ℏ

√2 m

d

dx
+ W (x) ψB

(n+1)

In[ ]:= ψF[n_] := (EB[n + 1])^-
1

2
*

ℏ

√
(2 m)

D[ψB[n + 1], x] + W*ψB[n + 1]

Out[ ]= -3 -2 -1 1 2 3

-1.0

-0.5

0.5

label
Ground state

1st Excited state

2nd Excited state

Figure 9. Numerical plots of the first 3 eigenstates of fermionic AHO hamiltonian
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6. CALCULATION OF POTENTIAL FROM A SUITABLE GROUND STATE

Now we deal with a different problem where we first take a suitable ground state wave function
and then try to find out what form of potential would be needed to generate this ground state wave
function and moreover, we can also solve the Schrodinger’s equation for that potential to find out
higher excited eigenstates and their corresponding eigenvalues. So for that purpose we take the
ground eigenstate of the form,

ψ = Ae−Bx4

(72)

and normalize it. By normalising we get,

ψ =

[
(2B)

1
4

2Γ
(
5
4

)] 1
2

e−Bx4

(73)

where Γ(n) is the well known Gamma function. Now we can calculate W using Eq.60 as,

W = − 1√
2

d

dx
(lnψ) =

4√
2
Bx3 (74)

where we have considered ~ = m = 1. Then using Eq.38 and Eq.41, we can obtain VB and VF as,

VB = W 2 − 1√
2
W ′ = 8B2x6 − 6Bx2 (75)

VF = W 2 +
1√
2
W ′ = 8B2x6 + 6Bx2 (76)

Now to get a standard form and to proceed with the numerical calculations, we choose B= 1
12 and

we write VB and VF as,

VB =
1

18
x6 − 1

2
x2 (77)

VF =
1

18
x6 +

1

2
x2 (78)

This potential can be substituted in the Mathematica code presented in the previous section to get
the energy eigenvalues and the higher energy eigenstates. Analytical and numerical solutions of
Schrodinger’s equation for similar kind of potential have been studied by several authors [6–9].
They have considered the general problem with the potential ax6 − bx2 and have calculated the
exact analytical or numerical solutions for specific values of a and b.

7. CONCLUSION

In this paper we have discussed the equivalence of partner Hamiltonian and tensor product formalism
which is an important idea to understand the framework of SUSY 1-D quantum mechanical systems.
The Mathematica code can be used to get the partner eigenstates for very general 1-D potentials
also for which we can get perturbative analytic solutions only as we have shown in the example of
inverted harmonic oscillator with anharmonic term .
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