
Volume 8                                       Number 3                                     2021

STUDENT JOURNAL OF PHYSICS

INTERNATIONAL JOURNAL

INDIAN ASSOCIATION OF PHYSICS TEACHERS

ISSN – 2319-3166



STUDENT JOURNAL OF PHYSICS

This is a quarterly journal published by Indian Association Of Physics Teachers. It publishes research articles
contributed  by  Under  Graduate  and  Post  Graduate  students  of  colleges,  universities  and  similar  teaching
institutions, as principal authors.

INTERNATIONAL EDITORIAL BOARD

Editor-in-Chief 

L. Satpathy
Institute of Physics, Bhubaneswar, India
E-mail: satpathy@iopb.res.in

Chief Editors 

Mahanti, S. D.
Physics and Astronomy Department, Michigan State University, East 
Lansing, Mi 48824, USA
E-mail: mahanti@pa.msu.edu
Srivastava, A.M.
Institute of Physics, Bhubaneswar, India
E-mail: ajit@iopb.res.in

EDITORS

Caballero, Danny
Department of Physics, Michigan State University, U.S.A.
E-mail: caballero@pa.msu.edu
Kortemeyer, Gerd
Joint Professor in Physics & Lyman Briggs College, Michigan State 
University, U.S.A.
E-mail: kortemey@msu.edu
Das Mohanty, Bedanga
NISER, Bhubaneswar, India
E-mail: bedanga@niser.ac.in
Panigrahi, Prasanta
IISER, Kolkata, India
E-mail: panigrahi.iiser@gmail.com
Ajith Prasad, K.C.
Mahatma Gandhi College, Thiruvananthapuram, India
E-mail: ajithprasadkc@gmail.com
Scheicher, Ralph
Physics Department, University of Uppsala, Sweden
E-mail: ralph.scheicher@physics.uu.se
Singh, Vijay A.
Homi Bhabha Centre for Science Education (TIFR), Mumbai, India
E-mail: physics.sutra@gmail.com
Walker, Allison
Department of Physics, University of Bath Bath BA2 7AY, UK
E-mail: A.B.Walker@bath.ac.uk
Carlson, Brett Vern
Department de Fisica, Institute Technologico de Astronatica, 
Sao Paulo, Brasil 
E-mail: brettvc@gmail.com

INTERNATIONAL ADVISORY BOARD 

Mani, H.S.
CMI, Chennai, India (hsmani@cmi.ac.in) 
Moszkowski, S. M. (until December 11, 2020)

UCLA, USA (stevemos@ucla.edu) 
Pati, Jogesh C.
SLAC, Stanford, USA (pati@slac.stanford.edu) 
Prakash, Satya
Panjab University, Chandigarh, India 
(profsprakash@hotmail.com) 
Ramakrishnan, T.V.
BHU, Varanasi, India (tvrama@bhu.ac.in) 
Rajasekaran, G.
The Institute of Mathematical Sciences, Chennai, 
India (graj@imsc.res.in)
Sen, Ashoke
HRI, Allahabad, India (sen@hri.res.in) 
Vinas, X.
Departament d’Estructura i Constituents de la 
Mat`eria and Institut de Ci`encies del Cosmos, 
Facultat de F´ısica, Universitat de Barcelona, 
Barcelona, Spain (xavier@ecm.ub.edu) 

TECHNICAL EDITOR 

Pradhan, D.
ILS, Bhubaneswar, India
(dayanidhi.pradhan@gmail.com) 

WEB MANAGEMENT 

Ghosh, Aditya Prasad
IOP, Bhubaneswar, India
(aditya@iopb.res.in) 

Registered Office

Editor-in-Chief, SJP, Institute of Physics, Sainik 
School, Bhubaneswar, Odisha, India – 751005
(www.iopb.res.in/~sjp/)



STUDENT JOURNAL OF PHYSICS

Scope of the Journal

The  journal is devoted to research carried out by students at undergraduate level. It  provides a platform for the young

students to explore their creativity, originality, and independence in terms of research articles which may be written in
collaboration with senior scientist(s), but with a very significant contribution from the student. The articles will be judged

for suitability of publication in the following two broad categories:

1. Project based articles

These articles are based on research projects assigned and guided by senior scientist(s) and carried out 

predominantly or entirely by the student. 

2. Articles based on original ideas of student

These articles are originated by the student and developed by him/ her with possible help from senior advisor.

Very often an undergraduate student producing original idea is unable to find a venue for its expression where it 
can get due attention. SJP, with its primary goal of encouraging original research at the undergraduate level 

provides a platform for bringing out such research works.
It is an online journal with no cost to the author.

Since SJP is concerned with undergraduate physics education, it will occasionally also publish articles on science education
written by senior physicists.

Information for Authors

• Check the accuracy of your references.
• Include the complete source information for any references cited in the abstract. (Do not cite reference numbers in 

the abstract.)
• Number references in text consecutively, starting with [1].

• Language: Papers should have a clear presentation written in good English. Use a spell checker.

Submission

1. Use the link "Submit" of Website to submit all files (manuscript and figures) together in the submission (either as a 
single .tar file or as multiple files) 

2. Choose one of the Editors in the link "Submit" of Website as communicating editor while submitting your 
manuscript. 

Preparation for Submission

Use the template available at "Submit" section of Website for preparation of the manuscript.

Re-Submission

• For re-submission, please respond to the major points of the criticism raised by the referees.
• If your paper is accepted, please check the proofs carefully.

Scope

• SJP covers all areas of applied, fundamental, and interdisciplinary physics research.

http://www.iopb.res.in/~sjp/submit.php
http://www.iopb.res.in/~sjp/submit.php
http://www.iopb.res.in/~sjp/submit.php




STUDENT JOURNAL OF PHYSICS

The Argument for a Low Energy Steady State Solar Neutron Flux

Zoe Marzouk1,2, Nicole Benker2,3

1 Senior undergraduate, B. Sc., Department of Mechanical and Materials Engineering, University of Nebraska, 
Walter Scott Engineering Center, Lincoln NE 68588-0656, U. S. A.
2 Department of Physics and Astronomy, Theodore Jorgensen Hall, 855 North 16th Street, University of Nebraska-
Lincoln, Lincoln, NE 68588-0299, U. S. A.
3 Recent B. Sc. in physics, University of Nebraska - Lincoln; now staff with the Pacific Northwest National 
Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland WA 99352, U. S. A.

Abstract:  Recent experiments  have suggested that  there is  a low energy  solar  neutron flux.  Findings from the
DANSON solar neutron detector experiment, which took data from October of 2016 to March of 2017, are revisited
to provide a context for this suggested solar neutron flux. The fraction of neutrons arriving at 1 au (astronomical
unit) has been calculated and used to determine the possible neutrino flux from the beta decay of the low energy
solar neutron flux. Because there has been solar flare data reported during the time of this experiment, solar events
cannot be ruled out as the source of this flux.  Here we present an analysis that indicates the need for a comparison
of data from an earth-based neutrino detector and for more experiments with real-time neutrino detectors and real-
time neutron spectroscopy in low Earth orbit.

Keywords: Helio astronomy, solar neutrons, neutron decay

1. INTRODUCTION

Several experiments, e.g. MESSENGER [1,2] and DANSON [3], have now suggested that there
is a low energy solar neutron flux, though this is not without controversy [4]. MESSENGER
experienced higher than expected neutron counts from low energy neutrons during solar flare
events,  suggesting  a  low energy neutron flux from the sun [1,2].  The Comptel  detector  [5],
although primarily a gamma ray detector, also detected significant neutrons but only above 8
MeV, which is higher than the neutron energies from the MESSENGER [1,2] and DANSON [3]
detectors. The Comptel detector did detect solar neutrons but observed solar neutrons only in
bursts  associated  with  solar  flares  [6-12].  Though  there  is  evidence  for  a  low energy  solar
neutron  flux,  it  is  uncertain  whether  such  neutrons  are  steady  state  (uniform over  time)  or
associated with shorter bursts.
A multi-layer neutron detector designed to act as a neutron calorimeter, the DANSON detector
[3],  was launched and deployed aboard  the International  Space  Station,  collecting  data  over
8x106 seconds.  Effectively,  the  DANSON  detector  was  a  passive  neutron  calorimeter  or
spectrometer,  so  as  to  roughly  determine  the  possible  low-energy  solar  neutron  flux  and
approximate mean energy of neutrons below 10 MeV [3]. 
The high energy solar neutron flux is produced by solar flares and other events that have been
documented [8-25] and understood. The origin of the observed low energy solar neutron flux,
observed by DANSON and MESSENGER [1-3] is, however, not known. So learning whether
observed low energy solar neutron flux (less than 10 MeV) is steady state resulting from solar
nucleosynthetic processes or associated with solar coronal mass discharge events will aid in the
study of the phenomenon.
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2. THE MEAN ENERGY FOR THE LOW ENERGY SOLAR NEUTRON FLUX

While the MESSENGER experiment placed the low energy neutron flux between 1 and 10 MeV,
DANSON refined the low energy neutron flux to be in the region of 2 to 4 MeV. To further
refine  this  estimate,  the  data  collected  during  DANSON’s  operation  was  compared  to  the
expected neutron energy distribution among the layers determined by Monte Carlo simulation
provided previously to model  DANSON [3].  It  is realistic  to expect  that cosmic ray created
neutrons and backscattered neutron would enter the DANSON detector from the earth facing
(nadir side) of the detector. Such neutrons, not of solar origin, could contribute counts at the
DANSON detector layer where solar neutrons would exit the detector.  These additional non-
solar neutron counts were not part of the Monte Carlo simulation [3] and there is some indication
in the DANSON data of "extra" neutrons entering the DANSON detector from the nadir side.
Accordingly, the data from the nadir side of the detector, in the data reported for DANSON [3],
was excluded from the fit to reduce complications from backscattered neutrons that might not be
part of the direct low energy solar neutron flux. For each incident energy in Figure 1, the squares
of the difference between the expected capture at each layer and actual capture at each detector
layer,  each as fractions of the maximum value of each curve,  were totaled for each incident
energy. The lowest value for the difference between expected data and the data collected shows
the incident energy for the neutrons, which was found to be about 2 MeV.

Figure  1:  The  experimental  layer  by  layer  detector  response is  compared  to  the simulation for  DANSON
detector  response  at  that  neutron  energy.  The  sum of  the  square  of  the  difference  between  experimental
measurement of neutron intensity from DANSON data and the expected value of neutron intensity determined
by Monte Carlo simulation [3], as a fraction of total counts. 
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Knowing the  energy,  the  time  it  takes  for  neutrons  to  get  to  Earth  can  be  calculated.  This
calculation can be used to determine the fraction of neutrons that arrive at 1 au based on standard
neutron decay time which lies between 879.6±0.8 [26,27] and 885.7 ± 0.8 [28] seconds. This
detectable fraction of solar neutrons at low energy, at 1 au, is a very small fraction of the initial
neutron flux. At a neutron energy of 2 MeV, the fraction of neutrons arriving at the detector is
1.705x10-4. The decay of most solar neutrons of low kinetic energy, at 1 au, means an increase in
the solar neutrino flux, since the neutrons of 2 MeV mean energy, detected by the DANSON
experiment, will have mostly decayed into a proton, an electron, and an electron antineutrino.
This is caused by the conversion of the negatively charged (−1/3 e) down quark to the positively
charged (+2/3 e) up quark by emission of a weak force W− boson which decays into an electron
and an electron antineutrino, i.e. n → p + e− + e. The fraction of neutrons that arrive at 1 au
also determines the fraction that have decayed before 1 au. 

Figure  2:  The calculated  fraction of  solar  neutrons arriving at  1 au using the  expected
neutron  decay  lifetime  (red)  and  using  the  decay  lifetime  with  relativistic  correction
(blue).The relativistic  correction to the decay lifetime for low-energy neutrons are small,
becoming relevant only at higher neutron energies.
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3. NEUTRINO FLUX FROM LOW-ENERGY SOLAR NEUTRONS

Since  it  was  determined  [3]  that  250-375  neutrons·cm-2s-1 arrive  at  1  au,  the  number  of
antineutrinos generated by the neutron decay can be calculated. Over a period of 8x106 seconds,
the total number of neutrinos will be roughly 3.4x1012 as a result of the decay of the vast majority
low energy solar neutrons that do not reach 1 au. If this additional neutrino flux was divided into
two or three short bursts over that length of time, each short burst would contain 1011 to 1012

neutrinos·cm-2s-1. Not all of these electron antineutrinos will arrive at an earth-based neutrino
detector; additionally, the generated neutrinos will not necessarily move in the direction of the
neutron flux. The neutrino flux, generated by the beta decay of the low kinetic  energy solar
neutron flux, may still be large enough that a short burst of neutrinos would be detected by one
or more of the current neutrino detectors.

Figure  3: The expected neutrino flux from solar neutron decay (see text) calculated from
Figure 2 both with (red) and without (blue) relativistic correction.
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4. DISCUSSION

In order to assess the likelihood of a steady state solar neutron flux of around 2 MeV mean
energy,  it  must  be  known  whether  there  was  solar  activity  recorded  during  the  time  of
DANSON’s operation. NOAA recorded some solar activity during that time from late 2016 to
early  2017  [26].  This  has  to  be  a  serious  consideration  because  solar  flare  events  between
October 23, 2016 to March 17, 2017 would coincide with the period of neutron data collection
by  DANSON [3].  Because  there  was  solar  activity,  it  must  be  considered  that  DANSON’s
neutron capture signal may include neutrons from these solar flare events. In the case that solar
flares contributed to this neutron count, it is important to note that the flares would have to be of
significantly low energy, around 1 to 4 MeV, as compared to more familiar high energy flares of
energies  around  75  MeV  [8,9,11-13,15,16,18-20,23],  because  of  the  low-energy  acceptance
window of the DANSON detector [3]. 

The relation of these known solar flare events [29] to DANSON’s neutron capture count could
be established by comparison with real-time neutrino detectors to see if there was an increase in
neutrinos associated with the decay 2 to 4 MeV energy solar neutrons at the times of solar flares.
The main contribution to the solar neutrino flux comes from the proton-proton reaction, with a
peak flux above 1011 neutrinos cm-2*sec-1 at 1 au, and these neutrinos have a low energy, up to
400 keV [20-33],  thus  would  overlap  with the  antineutrino  flux  resulting  from neutron beta
decay,  which  would  also  be  at  energies  below 1  MeV.  There  are  many  neutrino  detectors,
including  Sanford  Underground  Research  Facility  (SURF),  Borexino,  San  Grasso,  Super
Kamiokande, Sudbury, and still others [30,31]. Each of these detectors has a different sensitivity
to  the  neutrino  that  can  be  detected.  Not  all  are  sensitive  to  electron  antineutrinos  and
furthermore, previous experiments sensitive to low energy neutrinos (SAGE, Gallex, GNO) did
not  measure  the  individual  fluxes  [31],  unlike  Borexino  [34].  In  this  regard,  the  Borexino
neutrino detector is of interest for comparison because this is one of the few neutrino detectors
that is sensitive to the inverse beta decay reaction channel, and hence electron antineutrinos [35],
with some detection sensitivity to neutrino energies below 1 MeV [32,34,36].

A neutrino flux that occurs from the decay of steady state neutron flux would be difficult to
detect  over  the  solar  neutrino  background  produced  by  the  proton-proton  solar  neutrino
production mechanism, since the added neutrino flux would be orders of magnitude below this
solar neutrino flux of solar origin which, as noted above, is in the region of 1011 neutrinos cm-

2*sec-1 at  1 au).  In contrast,  if  the neutrons came in two or three short  bursts  over the data
collection period of the DANSON detector, then the neutrino flux measured by Borexino and
other neutrino detectors might experience a significant, noticeable increase during the solar flare
events, since only then would the neutrino production, from the decay of neutrons, be in bursts
on or above the order  of magnitude of the solar background produced by the proton-proton
neutrino signal. 

                                          Student Journal of Physics,Vol. 8, No. 3, 2021                                                89



Detection of a possible neutrino flux, generated by the beta decay of the low kinetic energy solar
neutron flux, will be complicated by the fact that while such neutrinos would be low-energy,
neutrinos  created  from the decay of  low kinetic  energy solar  neutron  will  be  spread over  a
significant energy window. The significant energy window of the neutrino energy is required
because the kinetic energy distribution of beta particles, resulting from beta decay, are diffuse, or
roughly continuous [37-39], although decreasing in intensity up to 1 MeV. Such neutrinos will
thus have an energy spectrum difficult to distinguish from the neutrinos created by the proton-
proton mechanism. 

If no neutrino bursts of energy less than 1 MeV have been reported or detected by the Borexino
Collaboration or any other neutrino detector project, this would diminish the likelihood that the 1
to 4 MeV low energy solar neutron flux arrives in bursts. Yet an absence of detected neutrino
bursts  at  energies  below  1  MeV,  correlated  with  solar  flare  events,  does  not  exclude  the
possibility of antineutrino bursts resulting from the decay of episodic low energy solar neutrons,
as detected by DANSON [3]. 

5. CONCLUSION

There is now a need to compare the recorded solar activity, specifically the solar flare events
between October 23, 2016 to March 17, 2017, to any sudden influx of neutrinos captured by a
real-time neutrino detector like Borexino, at neutrino energies below 1 MeV. Alternatively, a real
time neutron detector with greater sensitivity to neutrons at lower energies could also be used to
clarify the origin of low-energy solar neutrons. Such a real time neutron detector would provide
the capability to compare the solar neutron flux to solar flare events. With real time data, the
solar  neutron  flux  could  be  monitored  to  measure  for  bursts  or  steady  state  flux  and  more
accurately measure the energy of the flux. Determining the nature of the solar neutron flux,
whether it is steady state or not, would lead to answers about the origin of these low-energy
neutrons. If the neutrino detector efficiencies are improved sufficiently, such a neutron detector
would also permit a comparison of the low energy neutron flux and the solar neutrino flux in real
time. 
If the production of the low energy solar neutron flux is largely steady state, then long sought
measurements  of  the  quadrupolar  moment  of  the  sun  may  be  possible  [40-43].  This  latter
measurement could be significant because an accurate determination of the quadrupolar moment
of the sun could providing new insights into the cosmological constant  [43-45]. 
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Abstract. In this article we first write a brief review of supersymmetric quantum mechanics and then we
discuss the equivalence of two co-existing formalisms viz. tensor product formalism and partner hamiltonian
formalism for 1-D SUSY harmonic oscillator. We also present a Mathematica code with which one can calcu-
late the eigenstates of any 1-D SUSY partner Hamiltonian along with two illustrated examples of 1-D SUSY
harmonic oscillator and 1-D SUSY infinite potential box. Then we calculate the SUSY partner wave function
for 1-D anharmonic oscillator using this code and plot first few of them. Finally, we give an example how the
supersymmetric partner potentials can be calculated starting from a well-behaved ground state wave function 1.
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1. SUPERSYMMERIC QUANTUM MECHANICS

The promising idea of supersymmetry in physics started becoming the point of attraction in the late
twenties. The main idea here is to consider a broader picture of the standard model in particle physics
by considering bosons and fermions in the same footing. This idea has the potential of solving many
problems beyond standard model and in order to that it brought a new kind of symmetry into the
picture. This new symmetry allows one to interchange between two seemingly very different kind of
particles, bosons and fermions and it brings a new conserved quantity with it namely supercharge.
The simplest case of SUSY quantum mechanics is 1D SUSY harmonic oscillator. There exists
two parallel formalisms [5][3] for this system in the literature and both of them solve the problem
uniquely. In this article we will discuss about how both of these formalisms are deeply related and
will point out the equivalence of these two formalisms. At last we will also provide a Mathematica
code to calculate and plot the eigenfunction of 1D supersymmetric partner Hamiltonian and present
three examples of 1-D harmonic oscillator, 1-D infinite potential well and 1-d inverted harmonic
oscillator with an anharmonic term αx6.

†rathin.phy@iitb.ac.in
‡archana phy@iitb.ac.in
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2. A BRIEF REVIEW OF TWO FORMALISMS FOR SUSY HARMONIC OSCILLATOR

Bosonic and fermionic harmonic oscillators are main building block of many physical theories.
However, there is a mojor difference between the behaviour of these two particles[2]. By definition,
bosons have integeral spin and fermions have half integeral spin. Moreover, according to Pauli ex-
clusion principle no two identical fermions can occupy the same state but there is no such constraint
for bosons. Also, we know that under the exchange of two identical fermions the wave function
describing the state of these two particles takes up a minus sign but if we exchange two bosons no
such minus sign appears in the wave function.
Now, to bring the bosonic and fermionic particles in the same footing ‘supersymmetry’ plays a cru-
cial role and to incorporate them in a single frame one needs to build a common Hilbert space for
both of them. There are mainly two ways of constructing the Hilbert space of this system that yield
two different formalisms.

2.1 Tensor product formalism

The bosonic harmonic oscillator resides in a Hilbert space,HB that isL2(R) in nature and the Hilbert
space of fermionic harmonic oscillator,HF is a C2 space. The ladder operators of bosonic harmonic
oscillator are defined by their commutator relations and the ladder operator of fermionic harmonic
oscillator are defined by their anti-commutator relation. Now one of the ways to construct the Hilbert
space of SUSY harmonic oscillator is by going to a tensor product space of these two systems as

HS = HB ⊗HF . (1)

The basis of this Hilbert space is defined as

|n〉S = |n〉B ⊗ |n〉F ,

where |n〉B and |n〉F are the number state basis of bosonic and fermionic harmonic oscillators
respectively. An operator in this Hilbert space is defined as

O1 ⊗O2 : HB ⊗HF −→ HB ⊗HF . (2)

The Hamiltonian of the bosonic harmonic oscillator can be written as

HB = ~ωB

(
a†a+

1

2

)
, (3)

where a† and a are respectively annihilation and creation operators defined as

a† =
1√

2m~ωB

(−ip+mωBx) (4)

a =
1√

2m~ωB

(ip+mωBx) . (5)
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The commutation relation between them is given by[
a, a†

]
= 1, [a, a] = 0,

[
a†, a†

]
= 0, (6)

and NB = a†a is the bosonic number operator. This operator acting on the n-th number state gives
the number of bosonic particles of that particular state as the eigenvalue.

NB |n〉B = nB |n〉B , nB = 0, 1, 2, .. (7)

The energy eigenvalue equation for the above state can be written as

HB |n〉B = EnB
|n〉B =

(
nB +

1

2

)
~ω|n〉B . (8)

The operation of the creation and annihilation operators on the number states is given by

a†|n〉B =
√
nB + 1|n+ 1〉B (9)

a|n〉B =
√
nB |n− 1〉B . (10)

On the other hand the Hamiltonian of fermionic harmonic oscillator is given by

HF = ~ωF

(
c†c− 1

2

)
, (11)

where c and c† are respectively the fermionic annihilation and creation operator that satisfy the
anti-commutation relation as

{c, c†} = 1, {c†, c†} = 0, {c, c} = 0. (12)

The fermionic number operator is similarly defined as

NF = c†c, (13)

which acts on the n-th fermionic number state as

NF |n〉F = nF |n〉F , nF = 0, 1. (14)

The energy eigen value equation for this state would be written as

HF |n〉F = EnF
|n〉F =

(
nF −

1

2

)
~ω|n〉F . (15)

One property of fermionic creation and annihilation operators is that due to their anti-commutation
relations, they are nilpotent of order 2 which means

{c†, c†}|n〉F = 0 (16)(
c†c† + c†c†

)
|n〉F = 0

c†c†|n〉F = −c†c†|n〉F
c†c†|n〉F = 0. (17)
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Similarly for the annihilation operator

cc|n〉F = 0, (18)

which only leaves two possible state in the fermionic ladder namely |0〉 and |1〉 that satisfies

c|0〉 = 0 & c†|1〉 = 0. (19)

Now we construct the Hilbert space of the joint system as of Eq.1 and keeping in mind the form of
the operators in this Hilbert space as of Eq.2 we write the Hamiltonian of the Hilbert space of SUSY
harmonic oscillator as

HS = HB ⊗ IF + IB ⊗HB (20)

= ~ωB

(
a†a+

1

2

)
⊗ IF + IB ⊗

(
c†c− 1

2

)
~ωF , (21)

where IB and IF are the identities of bosonic and fermionic Hilbert spaces respectively. By using
the number operator of respective spaces the energy eigenspectrum of the Hilbert space of SUSY
harmonic oscillator becomes

E = EB + EF =

(
nB +

1

2

)
~ωB +

(
nF −

1

2

)
~ωF . (22)

Likewise, We can define the number operator of this SUSY harmonic oscillator as

NS = NB ⊗ IF + IB ⊗NF . (23)

We now come to the main part of the supersymmetry and define an operator Q called Supercharge
and its conjugate Q† as

Q = a⊗ c† and Q† = a† ⊗ c. (24)

These two operators acting on the number state of the Hilbert SpaceHS yield

Q†|n〉S =
(
a† ⊗ c

)
|n〉B ⊗ |n〉F = |n+ 1〉B ⊗ |n− 1〉F (25)

Q|n〉S =
(
a⊗ c†

)
|n〉B ⊗ |n〉F = |n− 1〉B ⊗ |n+ 1〉F . (26)

These operators change one fermion to one boson and vice versa. So these two operators are called
the generators of the supersymmetry. Now in Eq.1 if we take a simplifying assumption that ωB =

ωF = ω, HS takes the form

HS = ~ω
((

a†a+
1

2

)
⊗ IF + IB ⊗

(
c†c− 1

2

))
HS = ~ω

(
a†a⊗ IF + IB ⊗ c†c

)
. (27)
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Now it can be very easily shown that Q† and Q commutes with HS i.e.

[HS , Q] =
[
HS , Q

†] = 0. (28)

This implies that the system posses symmetry under the exchange of bosons and fermions and
the supercharge is also a conserved quantity. Q and Q† also obey the following anti-commutator
relations

{Q,Q†} = HS , {Q,Q} = 0 and {Q†, Q†} = 0. (29)

2.2 Super-Potential Formalism

This is a more general formalism and can handle various 1D SUSY systems unlike the tensor product
formalism. Here the trick is also to factorise the Hamiltonian. We begin with 1D time independent
Schrodinger’s equation of the system of our interest as

H1ψ
(n)
1 =

(
− ~2

2m

d2

dx2
+ V1(x)

)
ψ
(n)
1 = E

(n)
1 ψ

(n)
1 (30)

where E(n)
1 and ψ(n)

1 are the nth eigenvalue and eigenfunction of H1. Therefore, we can express the
potential in terms of the ground state eigenfunction and eigenvalue as

V1(x) =
~2

2m

1

ψ
(0)
1 (x)

d2ψ
(0)
1

dx2
+ E

(0)
1 (31)

Now by defining H1 − E(0)
1 as HB we can write it as

H1 − E(0)
1 = HB (32)

= − ~2

2m

d2

dx2
+

~2

2m

1

ψ
(0)
1 (x)

d2ψ
(0)
1

dx2
(33)

= − ~2

2m

d2

dx2
+ VB , where VB =

~2

2m

1

ψ
(0)
1 (x)

d2ψ
(0)
1

dx2
. (34)

At this point we introduce two operators A and A† in the following manner

A† = − ~√
2m

d

dx
+W (x)

A =
~√
2m

d

dx
+W (x), (35)

where W (x) is known as Superpotential. With a little algebra we get

A†A = − ~2

2m

d2

dx2
− ~√

2m
W ′(x) +W 2(x). (36)
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We can therefore factorise the Hamiltonian HB as

HB = A†A, (37)

with the identification

VB = W 2(x)− ~√
2m

W ′(x) = V1 − E(0)
1 . (38)

We denote the eigenvalues and eigenfunction of HB as E(n)
B and ψ(n)

B respectively. Note that ψ(n)
B

and ψ(n)
1 are same and the eigenvalues E(n)

B are different from E
(n)
1 by a constant shift of E(0)

1 .
Now comes the SUSY part and we define what we call “Partner Hamiltonian” of HB as

HF = AA†. (39)

Using definition of A and A† from Eq.35 we can write this equation as

HF = − ~2

2m

d2

dx2
+ VF (x) (40)

where, VF (x) = W 2(x) +
~√
2m

W ′(x). (41)

We can denote the nth eigenvalue and eigenfunction of HF as E(n)
F and ψ(n)

F . These states posses
some beautiful relations which will be very useful later. Note that using Eq.37 and Eq.39 we get

HB{A†ψ(n)
F (x)} = A†HFψ

(n)
F (x) = E

(n)
F {A

†ψ
(n)
F (x)} (42)

HF {Aψ(n)
B (x)} = AHBψ

(n)
B (x) = E

(n)
B {Aψ

(n)
B (x)} (43)

This shows that A†ψ(n)
F (x) is an eigenstate of HB and Aψ(n)

B (x) is an eigenstate of HF . So A† and
A are intertwining operators that link the eigenstates of the two partner Hamiltonians HB and HF .
With little algebra it can be shown that

ψ
(n)
F =

(
E

(n+1)
B

)−1/2
Aψ

(n+1)
B (44)

ψ
(n+1)
B =

(
E

(n)
F

)−1/2
A†ψ

(n)
F (45)

E
(n)
F = E

(n+1)
B (46)

Now in this formalism to show the supersymmetric invariance of the system we go to direct sum
space of HB and HF where Hamiltonian HB belongs to HB Hilbert space and Hamiltonian HF

belongs toHF Hilbert space. So, we define the new Hilbert space and the Hamiltonian as

HS = HB ⊕HF and (47)

HS =

(
HB 0

0 HF

)
(48)
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and the super charge operator and its conjugate as

Q =

(
0 0

A 0

)
and Q† =

(
0 A†

0 0

)
. (49)

Now it is easy to show that these operators follow the same commutation and anti-commutation
rules as of Eq.28 and Eq.29. We can write the SUSY wave function as

ψ
(n)
S =

(
ψ
(n)
B

ψ
(n)
F

)
(50)

but note that this is not an eigenstate of HS due to Eq.46. We shall have to take the state as

ψ
(n)
S =

(
ψ
(n)
B

ψ
(n−1)
F

)
(51)

to make it an eigenstate of HS . Now at this point the two formalisms seem to be using different
techniques to deal with the problem of SUSY harmonic oscillator. So, in the next section we would
like to discuss and illustrate how they are related and how the partner eigenstates are related to the
number state of tensor product formalism.

3. EQUIVALENCE OF TENSOR PRODUCT AND PARTNER HAMILTONIAN FORMAL-
ISM FOR 1-D SUSY HARMONIC OSCILLATOR

To understand the equivalence of these two formalisms we have to first understand what ψ(n)
F and

ψ
(n)
B means physically. A system is called fermionic when the total spin of the system is half integral

and we note that in 1-D harmonic oscillator the number of bosons can range from 0 to any large value
but the number of fermion can be either 0 or 1. From Eq.32 we see that for 1-D harmonic oscillator
ψ
(n)
B has energy eigenvalue

E
(n)
B = E

(n)
1 − E(0)

1 = n~ω. (52)

This directly implies that there are total n bosons and 0 fermions in this state which is equivalent to
|n〉⊗ |0〉 state of tensor product formalism or the nth bosonic excitation state of SUSY Hamiltonian
of tensor product space. The fermionic partner Hamiltonian state ψ(n)

F refers a state where we have
n bosons and 1 fermion making the total spin half integral and hence it is equivalent to the |n〉 ⊗ |1〉
state of tensor product formalism. By this comparison we can see clear physical meaning of Eq.46.
From Eq.52 and Eq.46 we get E(n)

F = (n + 1)~ω. Using this idea of equivalence we can find it to
be trivial that ψ(n)

F is a state containing n+1 particles and therefore, its energy is same as the energy
of |n〉 ⊗ |1〉 state. From Eq.44 and Eq.45 we can now understand the operation of A and A† on the
partner eigenstates more clearly that they respectively create a fermion by destroying a boson and
vice versa. This property was not that clear from equation 35. The normalisation constant of Eq.44
and Eq.45 can be calculated very easily. To derive Eq.44, Let us assume that

ψ
(n)
F = c1Aψ

(n+1)
B (53)
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where c1 is the normalisation constant then by taking inner products we get

1 = c21〈ψ
(n+1)
B |A†A|ψ(n+1)

B 〉 (54)

= c21〈ψ
(n+1)
B |HB |ψ(n+1)

B 〉 (55)

= c21E
(n+1)
B (56)

or,c1 =
(
E

(n+1)
B

)−1/2
(57)

we can do this similarly for Eq.45. Now we present a schematic diagram for visualising the connec-
tions between these formalisms and their corresponding states and energies.

Figure 1. Schematic diagram of equivalence of tensor product and partner Hamiltonian
formalism

In the partner Hamiltonian formalism the ground state is a bit special as there is no fermionic
partner eigenstate for this and the ground state of SUSY harmonic oscillator is bosonic. In the
diagram we have a pair of black vertical lines. The nodes on the left one of them represents the
bosonic states whereas the nodes on the right one denotes the fermionic states and these states are
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equidistant, marked by their corresponding level of excitation.
Here we give a table showing the equivalence of states of the two formalisms and their corresponding
positions marked in the diagram. All the arrows represent the necessary operators for going from
one state to another one.

Point in the diagram Cor. TP state Eqv. PH wave fn. E of the state nB of the state nF of the state

0B |0〉B ⊗ |0〉F ψ
(0)
B 0 0 0

0F |0〉B ⊗ |1〉F ψ
(0)
F ~ω 0 1

1B |1〉B ⊗ |0〉F ψ
(1)
B ~ω 1 0

1F |1〉B ⊗ |1〉F ψ
(1)
F 2~ω 1 1

2B |2〉B ⊗ |0〉F ψ
(2)
B 2~ω 2 0

2F |2〉B ⊗ |1〉F ψ
(2)
F 3~ω 2 1

3B |3〉B ⊗ |0〉F ψ
(3)
B 3~ω 3 0

(n-2) F |n− 2〉B ⊗ |1〉F ψ
(n−2)
F (n− 1)~ω n-2 1

(n-1)B |n− 1〉B ⊗ |0〉F ψ
(n−1)
B (n− 1)~ω n-1 0

(n-1) F |n− 1〉B ⊗ |1〉F ψ
(n−1)
F n~ω n-1 1

n B |n〉B ⊗ |0〉F ψ
(n)
B n~ω n 0

n F |n〉B ⊗ |1〉F ψ
(n)
F (n+ 1)~ω n 1

(n+1) B |n+ 1〉B ⊗ |0〉F ψ
(n+1)
B (n+ 1)~ω n+1 0

Cor., Corresponding; TP, Tensor Product; Eqv., Equivalent; PH, Partner Hamiltonian;
fn, function; E, Energy; nB , number of bosons; nF , number of fermions;

Table 1. Table of equivalence

So we note that the index ‘n’ in partner Hamiltonian formalism irrespective of ψB or ψF rep-
resents the number of bosons in that state. Now as A destroys a boson and creates a fermion, for the
bosonic ground state we can write

Aψ
(0)
B (x) = 0. (58)

This implies, W (x) = − ~√
2m

1

ψ
(0)
B

dψ
(0)
B

dx
(59)

= − ~√
2m

dln
(
ψ
(0)
B

)
dx

. (60)

So, this equation completes the calculation of SUSY wave function for 1D cases as using equations
35, 44, 46, 60 we can calculate the partner wave functions of any 1-D SUSY quantum mechanical
system as we show in the next section.
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4. CALCULATION OF SUSY PARTNER WAVE FUNCTIONS FOR 1-D SUSY HARMONIC
OSCILLATOR

In this section we calculate the eigenfunction of the fermionic Hamiltonian HF . Now for 1-D
harmonic oscillator we know that

H1ψ
(n)
1 =

(
− ~2

2m

d2

dx2
+

1

2
mω2x2

)
ψ
(n)
1 = E

(1)
1 ψ

(n)
1 . (61)

The eigenfunction and and the energy eigenvalues are given by

ψ
(n)
1 =

(mω
π~

)1/4 1√
2nn!

exp
(
−mω

2~
x2
)
Hn

[(mω
~

)1/2
x

]
(62)

where, Hn(x) are Hermite polynomials and

E
(n)
1 =

(
n+

1

2

)
~ω. (63)

So, as we have discussed earlier that ψ(n)
1 = ψ

(n)
B and E(n)

B = n~ω. The ground state wave function
of ψ(n)

B and its derivative is given by

ψ
(0)
B =

(mω
π~

)1/4
exp

(
−mω

2~
x2
)

and
d

dx
ψ
(0)
B = −xmω

~
ψ
(0)
B . (64)

From Eq.60 we get

W (x) =
~√
2m

mω

~
x =

√
m

2
ωx. (65)

So, now from Eq.41 we can write

VF (x) =
mω2

2
x2 +

1

2
~ω, (66)

and from Eq.46 we get

E
(n)
F = (n+ 1)~ω. (67)

Now, from Eq.44 and Eq.35 we can write the form of eigenstate of HF as

ψ
(n)
F =

1√
E

(n+1)
B

Aψ
(n+1)
B (68)

=
1√

(n+ 1)~ω

(
~√
2m

d

dx
+W (x)

)(
N exp

(
−mωx

2

2~

)
Hn

[(mω
~

)1/2
x

])
,

(69)

where N is the corresponding normalisation constant.
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Now after doing the simplification we get

ψ
(n)
F =

(mω
π~

)1/4 1√
2nn!

exp
(
−mω

2~
x2
)
Hn

[(mω
~

)1/2
x

]
. (70)

We see that the form of eigenfunctions are same for HB and HF in the case of 1-D SUSY harmonic
oscillator which is a well known example of shape invariant potential [1] in supersymmetric quantum
mechanics.

5. MATHEMATICA CODE

In this section we present a Mathematica code using which one can calculate the eigenfunctions of
HB and HF for any 1-D SUSY quantum mechanical system. The plots of the eigenfunctions have
been made in two different ways. Firstly, we have used the superpotential formalism in order to
obtain ψ(n)

F from ψ
(n)
B as shown in previous section. Secondly, we have used the analytical solution

of the partner eigenfunction to plot it.The first method is a more general numerical way of obtaining
the supersysmmetric partner eigenfunction even for the cases when it is hard to solve the schrodinger
equation of the system analytically.
We can observe that the plot of the wavefunctions made in two different ways matches perfectly.

SUSY 1 - D Harmonic Oscillator

In[ ]:= Clear["Global`*"];

◼ Value of the Parameters : -

In[ ]:= ℏ = 1; m =
1

2
; ω = 1;

◼ Potential : -

In[ ]:= V1[x_] :=
1

2
m ω^2 x^2;
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◼ Hamiltonian : -

In[ ]:= H1 = -
ℏ^2

2 m
* u''[x] + V1[x]* u[x];

◼ Obtaining Eigenvalues and Eigenfunctions (Ground State to 5th Excited State) of 1 D 
Harmonic Oscillator : -

In[ ]:= {Eigenvalue, Eigenfunction} = NDEigensystem[H1, u[x], {x, -100, 100}, 6,

Method →

{"SpatialDiscretization" ->

{"FiniteElement", {"MeshOptions" -> {"MaxCellMeasure" -> 0.01}}}}];

Out[ ]=

-10 -5 5 10

-0.6

-0.4

-0.2

0.2

0.4

0.6

label
Ground state

1st Excited state

2nd Excited state

3rd Excited state

4th Excited state

5th Excited state

Figure 2. Numerical plots of the first 6 eigenstates of bosonic HO hamiltonian

◼ Defining : -

In[ ]:= E1[n_] := Eigenvalue[[n]];

NOTE : Array indexing starts from 1 in Mathematica. So n = 1 is the Ground State in 
this case.
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◼ Energy Eigenvalue and Eigenfunction of Bosonic Hamiltonian HB : -

In[ ]:= EB[n_] := E1[n] - E1[1];

ψB[n_] := Eigenfunction[[n]];

◼ Superpotential : -

In[ ]:= W = -ψB[1]^(-1)* D[ψB[1], x];

◼ Fermionic Eigenfunction or

Eigenfunction of the Partner Hamiltonian(HF) : -

◼ ψF
(n) = EB

(n+1)-
1
2

ℏ
√2 m

d

dx
+ W (x) ψB

(n+1)

In[ ]:= ψF[n_] := (EB[n + 1])^-
1

2
*

ℏ
√(2 m)

D[ψB[n + 1], x] + W*ψB[n + 1]

Out[ ]= -10 -5 5 10

-0.6

-0.4

-0.2

0.2

0.4

0.6

label
Ground state

1st Excited state

2nd Excited state

3rd Excited state

4th Excited state

Figure 3. Numerical plots of the first 5 eigenstates of fermionic HO hamiltonian

The Analytic Solution of the Partner Hamiltonian 
Eigenfunction : -
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◼ Parameters : -

In[ ]:= m =
1

2
; ω = 1; ℏ = 1;

Now by using the form of Eq. 70 we define,

In[ ]:= ϕF[n_, x_] := 
m*ω

π
^

1

4


1
√(2^n n!)

Exp-
(m*ω)

2 ℏ
x^2 HermiteHn, 

m*ω

ℏ
^

1

2
 x

Out[ ]=

-10 -5 5 10

-0.6

-0.4

-0.2

0.2

0.4

0.6

label
Ground state

1st Excited state

2nd Excited state

3rd Excited state

4th Excited state

Figure 4. Plots of the first 5 analytical solutions of HO eigenstates

NB : The plots of ψF and ϕF are same apart from a random sign

flip. This sign is actually inherited from the method that

Mathematica uses for solving the differential equations. However

it doesn' t matter because if ψF is an eigenfunction of HF then

(-ψF) is also an eigenfunction of HF with the same eigenvalue.

Changing the value of the potential V1(x) we can plot the partner eigenfunction for any 1D
SUSY Quantum System. Below we are showing the same thing for an 1D Infinite Potential Box.
For the analytic solution we have considered the form of the partner eigenfunction as given in [4].

SUSY 1 D InfinitePotential Box

◼ Values of the Parameters : -

In[ ]:= ℏ = 1; m =
1

2
;
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◼ Potential : -

In[ ]:= V1[x_] := 0;

◼ Hamiltonian : -

In[ ]:= H1 = -
ℏ^2

2 m
* u''[x] + V1[x]* u[x];

◼ Boundary Condition : -

In[ ]:= B = DirichletCondition[u[x] ⩵ 0, True];

◼ Obtaining Eigenvalues and Eigenfunctions(Ground State to 5th Excited State) of 1D Infinite Potential 
Box :-

In[ ]:= {Eigenvalue, Eigenfunction} = NDEigensystem[{H1, B}, u[x], {x, 0, 1}, 6,

Method → {"Eigensystem" → {"Arnoldi",

"MaxIterations" → 10 000},

"PDEDiscretization" → {"FiniteElement", "MeshOptions" → {"MaxCellMeasure" → 0.001}}}];
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5th Excited state

Figure 5. Numerical plots of the first 6 eigenstates of bosonic HO hamiltonian
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Defining:-

In[ ]:= E1[n_] := Eigenvalue[[n]];

◼ Energy Eigenvalue and Eigenfunction of Bosonic Hamiltonian HB : -

In[ ]:= EB[n_] := E1[n] - E1[1];

ψB[n_] := Eigenfunction[[n]];

◼ Superpotential : -

In[ ]:= W = -ψB[1]^(-1)* D[ψB[1], x];

◼ Fermionic Eigenfunction or

Eigenfunction of the Partner Hamiltonian(HF) : -

◼ ψF
(n) = EB

(n+1)-
1
2

ℏ
√2 m

d

dx
+ W (x) ψB

(n+1)

In[ ]:= ψF[n_] := (EB[n + 1])^-
1

2
*

ℏ
√(2 m)

D[ψB[n + 1], x] + W*ψB[n + 1]

Out[ ]=
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1st Excited state
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3rd Excited state

4th Excited state

Figure 6. Numerical plots of the first 5 eigenstates of fermionic 1-D inf. pot. box
hamiltonian
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The Analytic Solution of the Partner Hamiltonian 
Eigenfunction : -

◼ Parameter : -

In[ ]:= L = 1;

In[ ]:= ϕF[n_, x_] := 
2

L ((n + 2)^2 - 1)
(n + 2)* Cos(n + 2)

π

L
x - Cot 

π

L
x * Sin (n + 2)

π

L
x

Out[ ]=
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2nd Excited state

3rd Excited state

4th Excited state

Figure 7. Plots of the first 5 analytical solutions of 1-D inf. pot. box hamiltonian
eigenstates

Now we present the results for a case which can not be studied analytically without perturbation
theory, the inverted harmonic oscillator. Here we have used the following form of potential;

V1(x) = −1

2
mω2x2 + αx6 (71)

Using this code we can very easily calculate its partner wave function numerically. We have here
plotted only first few of them.

SUSY 1 - D Anharmonic Oscillator

◼ Value of the Parameters : -

In[ ]:= ℏ = 1; m =
1

2
; ω = 1; α = 1;
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◼ Potential : -

In[ ]:= V1[x_] := -
1

2
m ω^2 x^2 + α x^6;

◼ Hamiltonian : -

In[ ]:= H1 = -
ℏ^2

2 m
* u''[x] + V1[x]* u[x];

◼ Obtaining Eigenvalues and Eigenfunctions (Ground State to 3rd 
Excited State) of 1D Harmonic Oscillator : -

In[ ]:= {Eigenvalue, Eigenfunction} =

NDEigensystem[H1, u[x], {x, -100, 100}, 4,

Method →

{"SpatialDiscretization" ->

{"FiniteElement", {"MeshOptions" -> {"MaxCellMeasure" -> 0.01}}}}];

Out[ ]=

-3 -2 -1 1 2 3

-0.5

0.5

label
Ground state

1st Excited state

2nd Excited state

3rd Excited state

Figure 8. Numerical plots of the first 4 eigenstates of bosonic AHO hamiltonian

◼ Defining : -

In[ ]:= E1[n_] := Eigenvalue[[n]];
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NOTE : Array indexing starts from 1 in Mathematica. So n = 1 is the 
Ground State in this case.

◼ Energy Eigenvalue and

Eigenfunction of Bosonic Hamiltonian HB : -

In[ ]:= EB[n_] := E1[n] - E1[1];

ψB[n_] := Eigenfunction[[n]];

◼ Superpotential : -

In[ ]:= W = -ψB[1]^(-1)* D[ψB[1], x];

◼ Fermionic Eigenfunction or Eigenfunction

of the Partner Hamiltonian(HF) : -

◼ ψF
(n) = EB

(n+1)
-
1
2

ℏ

√2 m

d

dx
+ W (x) ψB

(n+1)

In[ ]:= ψF[n_] := (EB[n + 1])^-
1

2
*

ℏ

√
(2 m)

D[ψB[n + 1], x] + W*ψB[n + 1]

Out[ ]= -3 -2 -1 1 2 3
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-0.5

0.5
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2nd Excited state

Figure 9. Numerical plots of the first 3 eigenstates of fermionic AHO hamiltonian

Student Journal of Physics,Vol. 8, No. 3, 2021 111



6. CALCULATION OF POTENTIAL FROM A SUITABLE GROUND STATE

Now we deal with a different problem where we first take a suitable ground state wave function
and then try to find out what form of potential would be needed to generate this ground state wave
function and moreover, we can also solve the Schrodinger’s equation for that potential to find out
higher excited eigenstates and their corresponding eigenvalues. So for that purpose we take the
ground eigenstate of the form,

ψ = Ae−Bx4

(72)

and normalize it. By normalising we get,

ψ =

[
(2B)

1
4

2Γ
(
5
4

)] 1
2

e−Bx4

(73)

where Γ(n) is the well known Gamma function. Now we can calculate W using Eq.60 as,

W = − 1√
2

d

dx
(lnψ) =

4√
2
Bx3 (74)

where we have considered ~ = m = 1. Then using Eq.38 and Eq.41, we can obtain VB and VF as,

VB = W 2 − 1√
2
W ′ = 8B2x6 − 6Bx2 (75)

VF = W 2 +
1√
2
W ′ = 8B2x6 + 6Bx2 (76)

Now to get a standard form and to proceed with the numerical calculations, we choose B= 1
12 and

we write VB and VF as,

VB =
1

18
x6 − 1

2
x2 (77)

VF =
1

18
x6 +

1

2
x2 (78)

This potential can be substituted in the Mathematica code presented in the previous section to get
the energy eigenvalues and the higher energy eigenstates. Analytical and numerical solutions of
Schrodinger’s equation for similar kind of potential have been studied by several authors [6–9].
They have considered the general problem with the potential ax6 − bx2 and have calculated the
exact analytical or numerical solutions for specific values of a and b.

7. CONCLUSION

In this paper we have discussed the equivalence of partner Hamiltonian and tensor product formalism
which is an important idea to understand the framework of SUSY 1-D quantum mechanical systems.
The Mathematica code can be used to get the partner eigenstates for very general 1-D potentials
also for which we can get perturbative analytic solutions only as we have shown in the example of
inverted harmonic oscillator with anharmonic term .

112 Student Journal of Physics,Vol. 8, No. 3, 2021



References

[1] Bagchi, B.K. “Supersymmetry in quantum and classical mechanics”,(2001).
[2] Naber, Gregory “Foundations of Quantum Mechanics:An Introduction to the Physical Background and

Mathematical Structure”,(2015).
[3] Cooper, F., Khare, A., Sukhatme, U.(1995). “Supersymmetry and quantum mechanics”, Phys. Rep. 251,

267-385.
[4] Kulkarni, A., Ramadevi, P.(2003). “Supersymmetry”, Reson 8, 28-41, doi: 10.1007/BF02835648
[5] T. Wellman, “An introduction to supersymmetry in quantum mechanical systems”, Brown University

Memorandum,(2003).
[6] S. Brajamani & P. S. Mazumdar, “Quantum normal form and the harmonic oscillator with x6 perturba-

tion”, (April 1988), International Journal of Theoretical Physics 27, 397399.
[7] Dai-Nam Le, Ngoc-Tram D. Hoang, Van-Hoang Le “Exact analytical solutions of the Schrdinger

equation for a two dimensional purely sextic double-well potential”, (March 2018), Journal of Mathematical
Physics 59, doi: 10.1063/1.4997532.

[8] Boya, Luis J. and Kmiecik, Michael and Bohm, A., “Calculations with supersymmetric potentials”,
Phys. Rev. D 35, 1255, doi: 10.1103/PhysRevD.35.1255

[9] P Roy et al, (1988), “Remarks on negative energy states in supersymmetric quantum mechanics”, J. Phys.
A: Math. Gen. 21 3673, doi: 10.1088/0305-4470/21/18/019.

Student Journal of Physics,Vol. 8, No. 3, 2021 113



STUDENT JOURNAL OF PHYSICS

Demonstration of a Quantum Harmonic Oscillator by involving
Higher Qubit States and further associating it to a Bosonic Sys-
tem
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Abstract. Here, we simulate a discretized quantum oscillator on a digital quantum computer provided by
the IBM quantum experience platform. The simulation is carried out in two spatial dimensions and directions
are provided for its extension to n-spatial dimensions. Further, we outline the necessary formulations for
relevant operators and using them, we perform simulation of a particle in a discretized quantum harmonic
oscillator potential using higher qubit system especially a five-qubit system. Finally we attempt to link the QHO
(Quantum Harmonic Oscillator) to a Bosonic system and study it. We associated the concept of Pauli Matrix
equivalent to Bosonic Particles and used it to calculate the Unitary Operators which helped us to theoretically
visualize each Quantum states and further simulate our system.

Keywords. Quantum Harmonic Oscillator, Pauli Matrix equivalents, Bosonic System, Quantum States, Rabi

Hamiltonian, Creation and Annihilation Operators, Unitary operator.

1. INTRODUCTION

Harmonic oscillator is one of the most fundamental problems in the field of Physics and it is in-
volved in all aspects of Physics. The reason is still unknown to us but it is very natural for us to
understand that whenever a system is disturbed from its minimum energy state then in the course
of attaining minimum energy state again, the system will tend to oscillate. This is how a harmonic
oscillator functions in a classical sense. Hence, it is worth to search for such a system in the quantum
world, too. Thus, Quantum Harmonic Oscillator is nothing but a quantum mechanical analog of the
classical harmonic oscillator.
A Quantum Harmonic Oscillator is different from a Classical Harmonic Oscillator mainly on the
basis of three grounds: First, the ground energy state for a quantum harmonic oscillator is non-zero
because there exists fluctuations as a result of Heisenberg Uncertainty Principle: Second, a particle
in a quantum harmonic oscillator potential can be found outside the region -A ≤ x ≤ +A with a
non-zero probability: Thirdly, the probability density distributions for a quantum oscillator in the
∗rajdeep.tah@niser.ac.in
†pprasanta@iiserkol.ac.in
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Figure 1. A Generalized Representation of Quantum Harmonic Oscillator

ground low-energy state is largest at the middle of the well. It is commonly used as a model to study
the vibrations of the atomic particles and molecules under the effect of classical spring like potential
which is a commonly accepted model for the molecular bonding. QHO (quantum harmonic oscil-
lator) is one of the exactly solvable models in the field of quantum mechanics having solutions in
the form of Hermite polynomials and it can be generalized to N-dimensions. Its application is not
only restricted to the study of simple di-atomic molecule, but it’s in fact expanded to the different
domains of Physics, e.g. in the study of complex modes of vibration in larger molecule, the theory
of heat capacity, QHO as a thermodynamic heat engine, etc.

2. HARMONIC OSCILLATOR IN BRIEF

The most common and familiar version of the Hamiltonian of the Quantum Harmonic Oscillator in
general can be written as:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 =

p̂2

2m
+

1

2
kx̂2 (1)

Where Ĥ is the Hamiltonian of the System, m is the mass of the particle, k is the bond stiffness
(which is analogous to spring constant in classical mechanics), x̂ is the position operator and p̂ =

−i~ ∂
∂x is the momentum operator (where ~ is the reduced Plank’s constant).

The analytical solution of the Schrodinger wave equation is given by[1]:

Ψ =

∞∑
nx=0

∞∑
ny=0

1

2n n!

(mω
π~

)1/2
e−

ζ2

2 e−
β2

2 Hnx(ζ)Hny (β)U(t) (2)
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Where;

ζ =

√
mω

~
x and β =

√
mω

~
y

Here Hn is the nth order Hermite polynomial. U(t) is the Unitary Operator of the system showing
its time evolution and is given by:

U(t) = exp

(
−itEn

~

)
= e

−itEn
~ (3)

Where En are the allowed energy eigenvalues of the particle and are given by:

En = (nx +
1

2
)~ω + (ny +

1

2
)~ω = (nx + ny + 1)~ω (4)

And the states corresponding to the various energy eigenvalues are orthogonal to each other and
satisfy: ∫ +∞

−∞
ψjψxdxi = 0 : ∀ xi (5)

A much simpler approach to the harmonic oscillator problem lies in the use of ladder operator
method where we make use of ladder operators i.e. the creation and annihilation operators (b̂†, b̂), to
find the solution of the problem.
Here b̂† denotes the ‘Creation’ operator and b̂ denotes the ‘Annihilation’ operator in Bosonic System.
We can also the Hamiltonian in terms of the creation and annihilation operators (b̂†, b̂)[2]:

Ĥ = ~ω(b̂b̂† − 1

2
) = ~ω(b̂b̂† +

1

2
)

Now the Hamiltonian for “a discrete quantum harmonic oscillator” is given by:

Ĥ =
(p̂d)2

2
+

(x̂d)2 + (ŷd)2

2
(6)

Where p̂d is the discrete momentum operator and x̂d and ŷd are the discrete position operators in in
x and y spatial dimension respectively. Also p̂d can be expressed as:

p̂d = (F d)−1 · x̂d · (F d) (7)

Where F d is the standard discrete Quantum Fourier Transform matrix[3].

3. DISCRETIZATION OF THE SPACE

Generally, Discretization is the process of transforming the continuous functions, models and so on
into their discrete counterparts. In fact, it is a necessity because to perform any kind of calculation on
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machines like quantum computers, one needs to work with specific number of elements so that one
can obtain outputs which have valid meanings over realistic time scales. However, the Hamiltonian
in Eq.(1) allows a continuous eigenspectrum of position. That is why, we have to discretize the
space. The Hamiltonian for “a discrete quantum harmonic oscillator” is given by:

Ĥ =
(p̂d)2

2
+

(x̂d)2 + (ŷd)2

2
(8)

Where p̂d is the discrete momentum operator and x̂d and ŷd are the discrete position operators in
x and y spatial dimension respectively. Now let us consider N number of finite elements in a two
dimensional space where x, y ∈ [−L,+L] such that a mesh of N2 number of elements can be
created with each mesh point corresponding to a particular eigenvalue of x and y (A list of 5-qubit
states and their corresponding mesh points are given in the following table). Assuming the Harmonic
Oscillator potential to be centred at (0,0), we can write the position operator in the form of N ×N
matrix with all the position eigenvalues lying along its diagonal as:

[x̂d] =

√
2π

N


−N/2 0 0 . 0

0 (−N/2) + 1 0 . 0

. . . . .

0 0 . . .

0 0 0 . (N/2)− 1

 (9)

The momentum operator (p̂d) can also be calculated in the same way. But to ease our calculation
in finding the momentum eigenvalue for each position eigenfunction, we try to make the quantum
Fourier transform of the wave function. This helps us to transform the wave function to momentum
space where the momentum operators apply multiplicatively and the momentum eigenvalues will
be the same as the position eigenvalues for respective discretized space points. An inverse discrete
quantum Fourier transform can then be performed to bring back the function into Cartesian-space.
The discrete momentum operator can then be applied as a N ×N matrix given by:

p̂d = (F̂ d)−1 · x̂d · (F̂ d) (10)
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Where F̂ d is the standard discrete Quantum Fourier Transform matrix[3]. Each element of F̂ d can
be expressed as:

[F̂ d]j,k =
exp(2iπjk/N)√

N
(11)

Where j, k ∈ [−N2 , ......,
N
2 − 1] and j= no. of rows in the matrix and k= no. of columns in the

matrix.
This process is applicable for larger systems and we can have both position and momentum operator.
We can also compute the unitary operator for studying the evolution of our system over time.

4. UNITARY TRANSFORMATION

For the sake of reducing mathematical complexity, let us assume ~, ω and m is unity (i.e. all are
having value 1). So, we can write the Schrodinger equation as:

i
∂Ψ

∂t
= ĤΨ (12)

Which further implies:

Ψ(t) = Ψ(0)exp(−iĤt) (13)

From the above, it is vivid that the Unitary Operator to be computed is U(t) = exp(−iĤdt) where;
Ĥd is the Discretized Hamiltonian Operator mentioned in Eq.(8). So, the Unitary Operator is given
by:

U(t) = exp

(
− it

(
(p̂d)2

2
+

(x̂d)2 + (ŷd)2

2

))
Or if we consider the X-dimension only, then we get the Unitary Operator as:

Ux̂(t) = exp

(
−it
2

((F d)−1 · (̂xd)2 · (F d) + (x̂d)2)

)
(14)

Due to the discretization of space; the position operator [x̂d], being a diagonal matrix, can be ex-
panded by using the concept of Matrix exponential as Ref.[4]:

exp

(
− it

2
[A]

)
= I +

∞∑
m=1

(
− it

2

)m
[A]m

m!
(15)

Here A is the corresponding Operator Matrix and by using the matrix in this form, a time evolution
can be performed for any arbitrary state. Such an evolution can be carried out using n-qubits in a
quantum circuit.
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5. QUANTUM SIMULATION

In our simulation we make use of 5 qubits for our simulation, so we consider 25 dimensional Hilbert
space (since for a n-qubit system N = 2n). Each dimension in the Hilbert space corresponds to an
eigenfunction of a particular position eigenvalue. For two spatial dimensions; x, y ∈ [−16, 16] and
our space is discretized into 32 × 32 = 1024 individual mesh points. In order to construct quantum
gates, we need to compute the unitary operator matrix. From Equation (4), the position operator in
its matrix form can be written as:

[x̂d] =

√
π

16



−16 0 0 0 . . . 0

0 −15 0 0 . . . 0

0 0 −14 0 . . . 0

0 0 0 −13 . . . 0

. . . . . . . .

0 0 0 0 . . 14 0

0 0 0 0 . . 0 15


(16)

Previously we have seen that [x̂d] does not hold the sole importance. Because of the structure of
the Hamiltonian, [x̂d]2 plays a huge role for computing unitary operators for kinetic and potential
energy portion individually. We can clearly see that [x̂d]2 is a diagonal matrix with each diagonal
element equal to corresponding position eigenvalue squared and is given by:

[x̂d]
′

= [x̂d]2 =
π

16



256 0 0 0 . . . 0

0 225 0 0 . . . 0

0 0 196 0 . . . 0

0 0 0 169 . . . 0

. . . . . . . .

0 0 0 0 . . 196 0

0 0 0 0 . . 0 225


(17)

From Eq.(15); the Unitary Operator for the potential energy portion, can be expressed as:

Ux̂(t) = I +

(
− it

2

)1
[m]

1!
+

(
− it

2

)2
[m]4

2!
+

(
− it

2

)3
[m]6

3!
+ ..... (18)

Where; m = x̂d. We can observe an exact Taylor expansion of the exponential function formed by
the addition of the corresponding diagonal elements of the matrix Ux̂ (after expanding the above
expression). We also notice that it is symmetrical about the element at position [16, 16] which is
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unity.

Ux̂(t) =



e−6.29it 0 0 0 . . . 0

0 e−5.52it 0 0 . . . 0

0 0 0 . . . . 0

. . . . . . . .

0 0 0 0 . . e−4.81it 0

0 0 0 0 . . 0 e−5.52it


(19)

Now we factor out the element at position [1,1] from the above equation (which kind of acts as a
global phase) and we get the ultimate form for the unitary operator as:

Ux̂(t) = e−6.29it



1 0 0 0 . . . 0

0 e0.77it 0 0 . . . 0

0 0 0 . . . . 0

. . . . . . . .

0 0 0 0 . . e1.48it 0

0 0 0 0 . . 0 e0.77it


(20)

From the above matrix; we can see that the first diagonal element is independent of any phase term
and hence gives an upper edge in the formation of quantum circuit. The rest of the diagonal terms
hold the phase values to be provided to the next 31 basis states in the sequence. Therefore, the
complete Unitary Operator for our case can be given as:

U(t) = exp

[(
− it

2

)
(p̂2x + p̂2y + x̂2 + ŷ2)

]
= Up̂xUp̂yUx̂Uŷ (21)

The orthogonality of the spatial dimensions x and y makes it possible that they obey the same
mathematical procedure independently.

GENERALIZATION

The Momentum and Position Operators are orthogonal so they commute with each other which
further allows us to generalize our methodology for computing the unitary operator to any arbitrary
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spatial dimensions. Here we will generalize the calculation of unitary operator for any arbitrary state
using any arbitrary number of qubits. The following matrices and tables are relevant for the same:

[x̂d] =

√
2π

N


−N/2 0 0 . . 0

0 (−N/2) + 1 0 . . 0

. . . . . .

0 0 . . . .

0 0 0 . 0 (N/2)− 1

 (22)

[x̂d]2 = [x̂d]
′

=

(
2π

N

)


(−N/2)2 0 0 . 0

0 ((−N/2) + 1)2 0 . 0

. . . . .

0 0 . . .

0 0 0 . ((N/2)− 1)2

 (23)

And the Unitary Operator will be:

U(t) = exp

[
− i[x̂d]2t

2

]
Which can be written/ expanded using Taylor expansion as:

U(t) = exp

[
− it[x̂d]2

2

]
= I +

∞∑
m=1

(
− it

2

)m
[[x̂d]2]m

m!

=⇒ Ux̂(t) = I +

(
− it

2

)1
[x̂d]2

1!
+

(
− it

2

)2
[x̂d]4

2!
+

(
− it

2

)3
[x̂d]6

3!
+ ..... (24)

To avoid Mathematical complexity and to give the jest of the algorithm, we will drop the term
(

2π
N

)
and write the Unitary operator in its matrix form:

Ux̂(t) =


e(−

N
2 )2it 0 0 . . . 0

0 e((−
N
2 )+1)2it 0 . . . 0

. . . . . . .

0 0 0 0 . e((−
N
2 )−2)2it 0

0 0 0 0 . 0 e((−
N
2 )−1)2it

 (25)

6. CIRCUIT IMPLEMENTATION

Using Eq.(21), we can naturally figure out that by making a circuit for Ux(t) and Up(t) in series,
we can complete the quantum circuit for the complete Unitary operator. Initially we will implement
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Up(t) because Ux(t) simply adds the extra phase factor in the circuit. And also to implement Up(t)
we need the Quantum Fourier Transform. So, we first propose a generalized circuit for Quantum
Fourier Transform[3] in Fig.(2) which is given in the next page.
Before that we must consider that the basis states enumerate all the possible states of the qubits
given as:

|x〉 = |x1x2 . . . xn〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 (26)

Where, with tensor product notation ‘⊗’, |xj〉 indicates that qubit j is in state xj , with xj either 0 or
1.

Figure 2. A generalized circuit for the implementation of The Quantum Fourier Trans-
form of n-qubit system.

In the above circuit, the quantum gates used are Hadamard Gate (H) and Controlled Phase Gate
(Rm). An efficient quantum circuit for Quantum Fourier Transform of a 5-qubit system is given in
Fig.(3) in the next page. The phase of the individual controlled U1 gate is given by:

φ =
2π

2n

Here, n = number of qubits used in the system. The controlled phase gate (cU1) can thus be written
in the form of a matrix:

cU1n =

[
1 0

0 e
2πi
2n

]
(27)

With e
2πi
2n = ω′n = ω(2n) which further indicates that ω(2n) or ω′n is the primitive 2n-th root of unity

(or 1).
So, we express H and cU1n in terms of:

H =
1√
2

[
1 1

1 −1

]
and cU1n =

[
1 0

0 e
2πi
2n

]
(28)
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Figure 3. A circuit for implementing the Quantum Fourier Transform using 5-qubit
system.

Similarly, in order to implement the inverted Quantum Fourier Transform (QFT), we need to gen-
erate a quantum circuit which is the mirror image of Quantum Fourier Transform with conjugate
phases at each controlled phase gate. An efficient quantum circuit for the same is given in Fig.(4).

Figure 4. A circuit depicting the Inverted QFT-Modified Mirror image of the circuit
for direct Quantum Fourier Transform.

Now the operator [xd]
′

which comes in between the QFT and inverted QFT, can be implemented by
using a series of Toffolli gate (also known as CCNOT gate or D(π/2) gate) and Controlled Phase
gate. To make the circuit applicable for all possible states of a 5-qubit system, we need to make
circuit in such a way that each of the state kind of gets the correct phase and provides an accurate
result. Here, we kind of make the quantum circuit (which is also called a filter) in the specific fash-
ion that the crucial phase information has been imparted. Each set of filters form the state for the
next set of filter and a series of such 31 filters can be used recursively to implement all the 31 phase
rotations to achieve Ux(t) (or to reduce the number of gates, one can exploit the symmetry about
the element positioned at [16,16] by using controlled X gate). A filter for the first state 00001 is
illustrated in Fig.(5).
Now by using the same technique, we can prepare the basic quantum circuit for a 3-qubit system.
First, we will write the unitary matrix for a 3-qubit system and then we will expand each diagonal
element of the unitary operator to make an exact Taylor expansion of the exponential function.
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Figure 5. The Inverted QFT-Modified Mirror image of Circuit For Direct Quantum
Fourier Transform.

The following matrix is the unitary operator for the 3-qubit system:

U3
x(t) =



e−1.57it 0 0 0 . . . 0

0 e−0.88it 0 0 . . . 0

0 0 e−0.39it . . . . 0

. . . . . . . .

0 0 0 0 . . e−0.39it 0

0 0 0 0 . . 0 e−0.88it



=⇒ U3
x(t) = e−1.57it



1 0 0 0 . . . 0

0 e0.69it 0 0 . . . 0

0 0 e1.18it . . . . 0

. . . . . . . .

0 0 0 0 . . e1.18it 0

0 0 0 0 . . 0 e0.69it


(29)

Now, clearly by using the quantum Fourier transform and its inverse with our filters in between, we
can design and implement the circuit for 3-qubit system. And, U3 gates can be used in the very
beginning of the circuit to initialize the circuit to some arbitrary state.
The quantum circuit for the 3-qubit system is shown in Fig.(6).

Figure 6. Quantum circuit for implementing Up(t) for a 3-qubit system.

124 Student Journal of Physics,Vol. 8, No. 3, 2021



7. IMPLEMENTATION ON A BOSONIC SYSTEM

The Hamiltonian of the full system is given by[5]:

Ĥ = Ĥfield + Ĥatom + Ĥint

where Ĥfield is the free Hamiltonian, Ĥatom is the atomic excitation Hamiltonian and Ĥint is the
interaction Hamiltonian.

7.1 MODEL

We can derive the Pauli Matrix Equivalents for Bosonic System by using the following three equations[6]:

(σ3)jl =
〈s, j|Sk|s, l〉

s~
=
j

s
δij (30)

(σ1)j l =
[s (s+ 1)− j (j − 1)]1/2

2 s
δj l+1 +

[s (s+ 1)− j (j + 1)]1/2

2 s
δj l−1 (31)

(σ2)j l =
[s (s+ 1)− j (j − 1)]1/2

2 i s
δj l+1 −

[s (s+ 1)− j (j + 1)]1/2

2 i s
δj l−1 (32)

∴ By using the above three equations, we have:

σ1 =
1√
2

0 1 0

1 0 1

0 1 0

 (33)

σ2 =
1√
2

0 −i 0

i 0 −i
0 i 0

 (34)

σ3 =

1 0 0

0 0 0

0 0 −1

 (35)

Where, σ1, σ2, σ3 are the Pauli Matrix equivalents for Bosonic particles.

We have modeled our system using Rabi Hamiltonian. However, in our case we will be using
somewhat modified version of Rabi Hamiltonian[7]:

Hs =

2∑
k=1

ωkb
†
kbk +

ω0

2
σ3 +

2∑
k=1

gk(eiθkbk + e−iθkb†k)σ1 (36)
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Where ω0 is the frequency of the main oscillator, ωk is the frequency of the k-th environment oscil-
lator; b†k and bk are the creation and annihilation operators of the main system and the k-th environ-
mental oscillator respectively. Whereas gk’s are the coupling constant for the interaction between
the k-th environment oscillator and the main quantum oscillator. We set k=1 from now to prevent us
from complicating the process.
For simplicity, we will consider the simplest case of our model and substitute k=1 in our original
Hamiltonian [in Eq.(36)] to obtain the special case of our Hamiltonian which will be our working
Hamiltonian from now:

H = ω1b
†
1b1 +

ω0

2
σ3 + g1(eiθ1b1 + e−iθ1b†1)σ1

For simplicity we will drop the sub-script 1 from our Hamiltonian and obtain:

H = ωb†b+
ω0

2
σ3 + g(eiθb+ e−iθb†)σ1 (37)

7.2 RELEVANT TRANSFORMATION AND GENERALIZATION

Now, as our system involves Bosonic particles, so the following commutation relations uphold:

[bi, b
†
j ] ≡ bib

†
j − b

†
jbi = δij (38)

[b†i , b
†
j ] = [bi, bj ] = 0 (39)

Here δij is known as ‘Kronecker delta’.
The operators used in the Hamiltonian can be transformed according to Holstein-Primakoff trans-
formations (i.e. it maps spin operators for a system of spin-S moments on a lattice to creation and
annihilation operators) as[8]:

Ŝ+
j =

√
(2S − n̂j)b̂j (40)

Ŝ−j = b̂†j

√
(2S − n̂j) (41)

Where b̂†j (b̂j) is the creation (annihilation) operator at site j that satisfies the commutation relations
mentioned above and n̂j = b̂†j b̂j is the “Number Operator”. Hence we can generalize the above
equations as:

S+ =
√

(2S − b†b)b (42)
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S− = b†
√

(2S − b†b) (43)

Where;

S+ ≡ Sx + iSy and S− ≡ Sx − iSy

Where; Sx (= σ1), Sy (= σ2), Sz (= σ3) are the Pauli matrices for Bosonic system (as mentioned in
the previous section).
Now by using the above transformations; we can write our creation and annihilation operators in
terms of Matrices as:

b† =

0 0 0

1 0 0

0 1 0

 and b =

0 1 0

0 0 1

0 0 0

 (44)

Now the Hamiltonian for our coupled Quantum Harmonic Oscillator in Eq.(37) can be decomposed
as:

H = ωb†b⊗ I +
ω0

2
I⊗ σ3 + g(eiθb+ e−iθb†)⊗ σ1

Or the above equation can be written as:

H = ωb†b⊗ I +
ω0

2
I⊗ S3 + g(eiθb+ e−iθb†)⊗ S1 (45)

Now, we will evaluate each term to simplify the expression of the Hamiltonian in the form of matrix.
Here,

ωb†b⊗ I = ω

0 0 0

0 1 0

0 0 1

⊗
1 0 0

0 1 0

0 0 1



⇒ ωb†b⊗ I =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 ω 0 0 0 0 0

0 0 0 0 ω 0 0 0 0

0 0 0 0 0 ω 0 0 0

0 0 0 0 0 0 ω 0 0

0 0 0 0 0 0 0 ω 0

0 0 0 0 0 0 0 0 ω


(46)
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Similarly,

ω0

2
I⊗ Sz =

ω0

2

1 0 0

0 1 0

0 0 1

⊗
1 0 0

0 0 0

0 0 −1



⇒ ω0

2
I⊗ Sz =



ω0

2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 −ω0

2 0 0 0 0 0 0

0 0 0 ω0

2 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 −ω0

2 0 0 0

0 0 0 0 0 0 ω0

2 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −ω0

2


(47)

Finally,

g(eiθb+ e−iθb†)⊗ Sx =
g√
2

 0 eiθ 0

e−iθ 0 eiθ

0 e−iθ 0

⊗
0 1 0

1 0 1

0 1 0



⇒ g(eiθb+ e−iθb†)⊗ Sx =
g√
2



0 0 0 0 eiθ 0 0 0 0

0 0 0 eiθ 0 eiθ 0 0 0

0 0 0 0 eiθ 0 0 0 0

0 e−iθ 0 0 0 0 0 eiθ 0

e−iθ 0 e−iθ 0 0 0 eiθ 0 eiθ

0 e−iθ 0 0 0 0 0 eiθ 0

0 0 0 0 e−iθ 0 0 0 0

0 0 0 e−iθ 0 e−iθ 0 0 0

0 0 0 0 e−iθ 0 0 0 0


(48)
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Substituting the above values in Eq.(45), we get the value of H (a 9× 9 matrix) as:

⇒ H =



ω0

2 0 0 0 geiθ√
2

0 0 0 0

0 0 0 geiθ√
2

0 geiθ√
2

0 0 0

0 0 −ω0

2 0 geiθ√
2

0 0 0 0

0 ge−iθ√
2

0 (ω + ω0

2 ) 0 0 0 geiθ√
2

0
ge−iθ√

2
0 ge−iθ√

2
0 ω 0 geiθ√

2
0 geiθ√

2

0 ge−iθ√
2

0 0 0 (ω − ω0

2 ) 0 geiθ√
2

0

0 0 0 0 ge−iθ√
2

0 (ω + ω0

2 ) 0 0

0 0 0 ge−iθ√
2

0 ge−iθ√
2

0 ω 0

0 0 0 0 ge−iθ√
2

0 0 0 (ω − ω0

2 )



8. DERIVATION OF UNITARY OPERATORS

Clearly, we know that for a system with Hamiltonian H , the unitary operator is given by:

U = e−iHt (49)

Where H is the Hamiltonian of the system derived in the previous section.
But to find the unitary operator compatible, we need to change the form of our Hamiltonian and write
it as a sum of two matrices whose corresponding unitary operators are relatively easier to compute:

H = X + Y

Where,

X =



ω0

2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 −ω0

2 0 0 0 0 0 0

0 0 0 (ω + ω0

2 ) 0 0 0 0 0

0 0 0 0 ω 0 0 0 0

0 0 0 0 0 (ω − ω0

2 ) 0 0 0

0 0 0 0 0 0 (ω + ω0

2 ) 0 0

0 0 0 0 0 0 0 ω 0

0 0 0 0 0 0 0 0 (ω − ω0

2 )
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Y =



0 0 0 0 geiθ√
2

0 0 0 0

0 0 0 geiθ√
2

0 geiθ√
2

0 0 0

0 0 0 0 geiθ√
2

0 0 0 0

0 ge−iθ√
2

0 0 0 0 0 geiθ√
2

0
ge−iθ√

2
0 ge−iθ√

2
0 0 0 geiθ√

2
0 geiθ√

2

0 ge−iθ√
2

0 0 0 0 0 geiθ√
2

0

0 0 0 0 ge−iθ√
2

0 0 0 0

0 0 0 ge−iθ√
2

0 ge−iθ√
2

0 0 0

0 0 0 0 ge−iθ√
2

0 0 0 0


Thus we have,

U = e−iXt.e−iY t

=⇒ U = Ux(t).Uy(t)

Where Ux(t) = e−iXt and Uy(t) = e−iY t. First we will compute Uy(t), then Ux(t). We can see that
Uy(t) can be expanded using Taylor series of expansion of the exponential function as:

Uy(t) = exp(−itY ) = I +

∞∑
m=1

(−it)mY
m

m!

=⇒ Uy(t) = I + (−it)1Y
1!

+ (−it)2Y
2

2!
+ (−it)3Y

3

3!
+ (−it)4Y

4

4!
+ (−it)5Y

5

5!
+ ......

Now, for simplicity, let us denote g√
2

= g
′
. So, we have:

=⇒ Uy(t) = [1+
(−itg′)2

2!
+

(−itg′)4

4!
+...]I+[

(−itg′)
1!

+
(−itg′)3

3!
+

(−itg′)5

5!
+...]M

Where;

M =



0 0 0 0 eiθ 0 0 0 0

0 0 0 eiθ 0 eiθ 0 0 0

0 0 0 0 eiθ 0 0 0 0

0 e−iθ 0 0 0 0 0 eiθ 0

e−iθ 0 e−iθ 0 0 0 eiθ 0 eiθ

0 e−iθ 0 0 0 0 0 eiθ 0

0 0 0 0 e−iθ 0 0 0 0

0 0 0 e−iθ 0 e−iθ 0 0 0

0 0 0 0 e−iθ 0 0 0 0


(**We can observe that [Y 2, Y 4, Y 6,....] will give Identity matrices whereas [Y 1, Y 3, Y 5,...] will
give the same matrix which is given above as M. So we differentiate them in two groups.)

=⇒ Uy(t) = cos g
′
tI− iM sin g

′
t
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=⇒ Uy(t) = cos
gt√

2
I− iM sin

gt√
2

(50)

Now for Bosonic particles, we need to use a 4-qubit system but for implementing a 4-qubit system
we must require a 16 × 16 matrix because any matrix of order N × N must satisfy the condition
N = 2n (where n= number of qubits). But we can express the above equation in form of a 16× 16

matrix (which we have shown in the next sub-section), instead of a 9 × 9 matrix, by adding 1
diagonally seven times and placing 0 in other positions. In our situation we need only nine of the
sixteen 4-qubit states (mentioned in Table (I)) because for the other seven states we will get the
same Unitary matrix as result (i.e. without any change). We will use a 4-qubit system to simulate
the above system. Therefore, we first note the results we get after operating Uy(t) on different 4-
qubit states so that we can go ahead on drawing the quantum circuit for the same.

Now, we need to disentangle the final Quantum states after Uy(t) Operator acts on the Qubit states
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to be able to create the Quantum circuit. So, we can disentangle the final result as:(
cos

gt√
2

0000− sin
gt√

2
e−iθ0100

)
= 0⊗

(
cos

gt√
2

0− sin
gt√

2
e−iθ1

)
⊗ 0⊗ 0

. .

. .(
cos

gt√
2

0110− sin
gt√

2
eiθ0100

)
= 0⊗ 1⊗

(
cos

gt√
2

1− sin
gt√

2
eiθ0

)
⊗ 0

. .

. .(
cos

gt√
2

1000− sin
gt√

2
eiθ0100

)
=

(
cos

gt√
2

1− sin
gt√

2
eiθ0

)
⊗ 1⊗ 0⊗ 0

Figure 7. Filter for 1000 in case of Uy(t) Operations

So, in the above segment, we computed the Uy(t) operator and also disentangled the results. A
filtered portion of our quantum circuit for the qubit state 1000 is shown in Fig.(7).
Now in order to compute Ux(t) which is equal to e−iXt, we first expand the expression using the
Taylor expansion of the exponential function just like we did in earlier case as:

Ux(t) = exp(−itX) = I +

∞∑
m=1

(−it)mX
m

m!
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=⇒ Ux(t) = I+(−it)1X
1!

+(−it)2X
2

2!
+(−it)3X

3

3!
+(−it)4X

4

4!
+(−it)5X

5

5!
+ ......

Therefore by using the above equation, we can express Ux(t) in terms of e as:

In case of Ux(t) Operator also; we will consider a 16 × 16 matrix (in place of a 9 × 9 matrix)
because of same reason mentioned before and also we will construct the matrix in the same pattern
as mentioned in case of Uy(t) operator. It is easy to observe as X is a diagonal matrix, each diagonal
element of Ux(t) makes an exact Taylor expansion of the exponential function
(**The 16× 16 matrix for both Uy(t) and Ux(t) operators are mentioned in the next sub-section.)
Again, we operate this operator on different 4-qubits states (in our situation we need only nine of
the sixteen 4-qubit states because for the other seven states we will get the same Unitary matrix as
result.) and then study the results for the same given in Table(II):
From the above table we can see the effect of Ux(t) operator acting on the different 4-qubit states
and we can construct the Quantum circuit for the same. A filtered portion of our quantum circuit for
the qubit state 0000 is shown in Fig.(8).
Now, we know how to implement both the parts of our Unitary operator and the complete unitary
matrix (16× 16) can be implemented by operating both the operations in series. In this way we can
easily calculate our Unitary operators for Bosonic system and also simulate the Unitary Operators
for a Quantum Harmonic Oscillator. We present its simulation results on IBM quantum computer in
the form of graphs later on. Each simulation is carried on IBMQ-qasm Simulator using 8192 shots
for better accuracy.
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UNITARY OPERATOR MATRIX REPRESENTATIONS

The 16× 16 Matrix representation of the Unitary operators Uy(t) and Ux(t) are:

Uy(t) =



A 0 0 0 B 0 0 0 0 0 0 0 0 0 0 0

0 A 0 B 0 B 0 0 0 0 0 0 0 0 0 0

0 0 A 0 B 0 0 0 0 0 0 0 0 0 0 0

0 C 0 A 0 0 0 B 0 0 0 0 0 0 0 0

C 0 C 0 A 0 B 0 B 0 0 0 0 0 0 0

0 C 0 0 0 A 0 B 0 0 0 0 0 0 0 0

0 0 0 0 C 0 A 0 0 0 0 0 0 0 0 0

0 0 0 C 0 C 0 A 0 0 0 0 0 0 0 0

0 0 0 0 C 0 0 0 A 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Where;

A = cos

(
gt√

2

)
; B = −i sin

(
gt√

2

)
eiθ and C = −i sin

(
gt√

2

)
e−iθ
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Figure 8. Filter for 0000 in case of Ux(t) Operations

Ux(t) =



S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
S 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 P 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 R 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 P 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Where,

P = e−(ω+
ω0
2 )it ; Q = e(−ω)it ; R = e−(ω−

ω0
2 )it ; S = e(−

ω0
2 )it and

1

s
=

1

e(−
ω0
2 )it

= e(
ω0
2 )it

9. RESULTS

In first part of our paper, we extend the idea of simulation of quantum harmonic oscillator by per-
forming the simulation using higher number of qubits especially 5-qubits and we realized that we
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are well able to do so using the IBMQ-qasm simulator present on the IBM Experience site. Our
initial expectation was that taking higher number of qubits result in larger number of mesh points in
the discretized space and hence results are produced with higher degree of accuracy in comparison
with the system with lower number of qubits. We come to that result only after comparing data
that we got during simulation using 3-qubit and 5-qubit system. The result of simulation of 3-qubit
system is shown in Fig.(9).

Figure 9. Graph between Measurement Probability vs Computational states in 3-qubit
system.

In the final part of our paper, we use the idea of Pauli Matrices Equivalents for Bosonic particles and
see the implementation of the equivalent matrices. Then we introduce a coupled Quantum Harmonic
Oscillator to the Bosonic system and try to implement its Unitary Operator to the system using our
previous section’s knowledge and also simulate the Unitary Operators using IBMQ-experience (in
8192 shots for better accuracy). The Results of the simulation are shown in Fig.(10), Fig.(11) and
Fig.(12) respectively.
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10. CONCLUSION

Now, we understand that the Quantum Harmonic Oscillator (QHO) is different from its classical
counterpart in many aspects, so oscillation in classical case cannot be pictured in quantum realm.
However, there is still something which is measurable and keeps the essence of Quantum Harmonic
Oscillator alive. The measurable stuff that we are talking about is none other than the probability
amplitudes of the states itself. From the simulations that we obtain on the IBMQ-Experience plat-
form, it can be concluded that the variations of probability amplitudes of the states correspond to
the oscillations in quantum sense. Moreover, by performing the simulations in two spacial dimen-
sions, we can state that the results in each dimension is quite independent of the other which was
expected intuitively. Clearly, for more accuracy, the number of qubits has to be increased and the
generalization section of our work has to be used as it is valid for arbitrary number of qubits. In this
project, we visualized the process for simulating a Quantum Harmonic Oscillator (QHO), associ-
ated to a Bosonic system, using IBMQ-experience. In our case we derived the Unitary Operators for
the (QHO) by using the Pauli Matrix equivalents for Bosonic system and after that we associated
the usable Quantum States (4-qubit states) with the Unitary Operator (which is in-turn formed by
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combining the Uy(t) and Ux(t) Operators in series). From the above process we can infer that the
Unitary Operator is the sole factor which is necessary for simulating the (QHO) and we simulate
the system by taking 8192 shots in IBMQ-experience because it will increase the effectiveness of
our results and decrease the chance of any error in our simulation.

11. ACKNOWLEDGEMENTS

RT would like to thank Bikash K. Behera and Prof. Prasanta K. Panigrahi of Indian Institute of
Science Education and Research, Kolkata for providing him guidance in this project. He also ac-
knowledge the support of IBM Quantum Experience for producing experimental results and the
results as well as views expressed are solely those of the author and do not reflect the official policy
or position of IBM or the IBM Quantum Experience team.

References

[1] D. J. Griffths, Introduction to Quantum Mechanics, Pearson Prentice Hall (2004), URL: https:
//www.fisica.net/mecanica-quantica/Griffiths%20-%20Introduction%20to%

20quantum%20mechanics.pdf

[2] Relation between Hamiltonian and the Operators, URL: https://en.wikipedia.org/wiki/
Creation_and_annihilation_operators

[3] Quantum Fourier Transform, URL: https://en.wikipedia.org/wiki/Quantum_Fourier_
transform

[4] V. K. Jain, B. K. Behera, and P. K. Panigrahi, Quantum Simulation of Discretized Harmonic Oscil-
lator on IBMQuantum Computer, URL: https://www.researchgate.net/publication/
334680969_Quantum_Simulation_of_Discretized_Harmonic_Oscillator_on_

IBM_Quantum_Computer

[5] Jaynes-Cummings model, URL: https://en.wikipedia.org/wiki/Jaynes%E2%80%

93Cummings_model

[6] Calculating the Pauli Matrix equivalent for Spin-1 Particles, URL: http://farside.ph.utexas.
edu/teaching/qm/Quantum/node56.html

[7] B. Militello, H. Nakazato, and A. Napoli1, 2 : Synchronizing Quantum Harmonic Oscillators through
Two-Level Systems, Phys. Rev. A 96, 023862 (2017).

[8] Holstein-Primakoff transformation, URL: https://en.wikipedia.org/wiki/Holstein%E2%
80%93Primakoff_transformation

138 Student Journal of Physics,Vol. 8, No. 3, 2021

https://www.fisica.net/mecanica-quantica/Griffiths%20-%20Introduction%20to%20quantum%20mechanics.pdf
https://www.fisica.net/mecanica-quantica/Griffiths%20-%20Introduction%20to%20quantum%20mechanics.pdf
https://www.fisica.net/mecanica-quantica/Griffiths%20-%20Introduction%20to%20quantum%20mechanics.pdf
https://en.wikipedia.org/wiki/Creation_and_annihilation_operators
https://en.wikipedia.org/wiki/Creation_and_annihilation_operators
https://en.wikipedia.org/wiki/Quantum_Fourier_transform
https://en.wikipedia.org/wiki/Quantum_Fourier_transform
https://www.researchgate.net/publication/334680969_Quantum_Simulation_of_Discretized_Harmonic_Oscillator_on_IBM_Quantum_Computer
https://www.researchgate.net/publication/334680969_Quantum_Simulation_of_Discretized_Harmonic_Oscillator_on_IBM_Quantum_Computer
https://www.researchgate.net/publication/334680969_Quantum_Simulation_of_Discretized_Harmonic_Oscillator_on_IBM_Quantum_Computer
https://en.wikipedia.org/wiki/Jaynes%E2%80%93Cummings_model
https://en.wikipedia.org/wiki/Jaynes%E2%80%93Cummings_model
http://farside.ph.utexas.edu/teaching/qm/Quantum/node56.html
http://farside.ph.utexas.edu/teaching/qm/Quantum/node56.html
https://en.wikipedia.org/wiki/Holstein%E2%80%93Primakoff_transformation
https://en.wikipedia.org/wiki/Holstein%E2%80%93Primakoff_transformation


STUDENT JOURNAL OF PHYSICS

Rainbow and Acid Rain

Sparsh Sinha1, Rajesh B. Khaparde2, Ajit M. Srivastava3

1 UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098, 
email:  sparshsinha30101998k@gmail.com

2 Homi Bhabha Centre for Science Education, TIFR, Mumbai 400088, email: rajesh@hbcse.tifr.res.in
3 Institute of Physics, Bhubaneswar 751005, email: ajit@iopb.res.in
 
Abstract: This experimental study investigates the possibility of measurement of rainbow angle and using it to
get an estimate of the acidity or pH of rainwater falling at a distant place. We studied the rainbow angle in the
laboratory using a pendent drop of a liquid, and measured the total angle of deviation for the first and the second
order rainbow for various values of pH of the acidic solution. We used sulfuric acid and nitric acid which make
up most of the acid rain. In the case of sulfuric acid, the variation was found to be 1.202° and 2.074° for angle of
deviation corresponding to first and second order rainbow, respectively. In case of nitric acid, the variation in
angle of deviation corresponding to first order and second order rainbow was found to be 0.376° and 1.507°,
respectively. The experimental results show that there is small change in the rainbow angle with variation of pH
of the acidic solution of the drop.
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1. INTRODUCTION
Rainbow is  one of  the most  beautiful  phenomena observed in  nature.  On a rainy day,  a
rainbow is produced when white light from the sun falls and gets deviated to the eyes of an
observer on the earth due to a large number of raindrops in the sky (Figure 1). 

Figure 1: Formation of primary (first order) and secondary (second order) rainbow
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The several colors in a rainbow are due to the fact that sunlight is made up of a range of
colors, and the light of different colors is refracted at different angles, when it passes from
one medium into another. Thus ‘dispersion’ occurs as sunlight propagates through the drop.
From the surface of the earth,  we can  easily  observe primary (first  order) and secondary
(second order) rainbows and the Alexander’s dark band between the two rainbows.

Acid  rain  results  when  sulfur  dioxide  (SO2)  and  nitrogen  oxides  (NOx)  present  in  the
atmosphere  get  absorbed  in  the  precipitating  rainwater  [1].  The  acids  (having  different
refractive  indices)  and  their  interaction  with  water  molecules  together  contribute  to  the
change  in  the  refractive  index  of  rainwater,  which  affect  the  angle  (with  respect  to  the
incident sunlight) at which the rainbow is observed.

The relation between the angle of deviation for different order rainbows and refractive index
of the liquid is well defined in geometrical optics  [2]. There exists  almost a linear relation
between  refractive  index  and  low concentrations  of  acid  in  solutions  [3],  [4],  and  these
concentrations can be determined using pH in the range of 0 to 7, hence it is possible to show
the variation of angle of deviation of different order rainbow with the pH. This provides a
possibility  that  the measurement  of rainbow angle can be used to  estimate the acidity  of
rainwater falling at a distant place. We conducted a systematic study of this possibility using
a single droplet  in a laboratory. We studied the variation of the angle at which rainbow is
observed by using a drop of acidic solution with varying pH of the drop.

In this laboratory investigation on formation of rainbow with acidic solutions, we use a red
He-Ne laser as a source of parallel beam of monochromatic light. Here, we do not observe
various colors as in the case of a rainbow in the sky formed due to sunlight falling on the
water drops. We still use the term ‘rainbow’ that here refers to the first bright fringe (from a
set  of  fringes) emerging from a pendent  drop of  a  liquid which is  observed through the
telescope of a prism spectrometer.  

2. THEORY
In view of  geometrical  optics,  a  rainbow formation  takes  place  because of  a  ray getting
reflected and refracted in a droplet of water with refractive index µ. Consider Figure 2 for the
first order rainbow (k = 1) formed because of a spherical droplet with a single ray. If we
follow along the path of the ray, we find that the ray undergoes a refraction then an internal
reflection and finally a refraction emerging at C. If i and r be the angle of incidence and the
angle of refraction respectively, and if φ1 is the total angle of deviation of the emerging ray
from the ray incident on the drop then,
φ1=180°+2 i−4 r

Figure 2: Ray diagram for the first order rainbow formed from a spherical drop
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For  the  second  order  rainbow  instead  of  one  internal  reflection  there  are  two  internal
reflections as shown in Figure 3 and if φ2 is the total angle of deviation of the emerging ray
from the ray incident on the drop then,
φ2=360 °+2i−6 r

Figure 3: Ray diagram for the second order rainbow formed from a spherical drop

In  the  same manner,  for  kth order  rainbow,  as  derived  in  [5],  if  φk is  the  total  angle  of
deviation of the emerging ray from the ray incident on the drop then,

φk=180k+2 i−2 ( k+1 )r

We minimize φk with respect to angle i (and use Snell’s law),   for finding the minimum angle
of deviation at which rainbow formation takes place. We find the minimum φk to be:

φk=180k+2cos
−1√ μ

2−1
k (k+2 )

−2 (k+1 ) sin−1( sin cos
− 1√ μ2−1

k (k+2 )

μ
)          ….(Eq. 1)

We plotted  using Desmos [6],  a theoretically expected graph of variation of total angle of
deviation or rainbow angle  φk   as given by equation (1) with refractive index µ for various
orders of rainbow i.e., k = 1, 2, 3, 4 and 5 as shown in Figure 4.
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Figure 4: Plot of variation of rainbow angle φk with refractive index µ for various values of k

3. EXPERIMENTAL SETUP
The  complete  experimental  arrangement  is  as  shown  in  Figure  5  and  Figure  6.  The
experimental setup used in this study consisted of the following main components:

(a) A He-Ne red laser source (wavelength 632.8 nm with 5 mW of power) was used  as a
source of monochromatic and parallel  beam of light. The laser source was mounted on a
precision laboratory jack using a laser mount as shown in Figure 6.

(b) A prism spectrometer (9 inches diameter scale and having least count of 0.0028°, Make:
Optiregion [7]) was used for measuring the angle of deviation for the first and second order
rainbows. A specially designed mount with a syringe holder was used for holding the syringe
on the prism table of the spectrometer. At the front (where light enters) of the collimator an
aluminum sheet  with a  hole of  2 mm diameter,  was stuck using foam tape.  Lens in  the
collimator was replaced with a pin hole of diameter 2 mm. This was done to ensure that the
incident  laser  beam  passes  through  the  center  of  the  spectrometer  symmetrically.  The
objective of the telescope was also removed.

(c)  A pair  of  polarizer  and analyzer  (Make:  Melles  Griot)  were used  for  controlling  the
intensity of the laser beam as we were observing the rainbow and the direct beam through the
telescope for measuring the angles.

(d) An Abbe’s Refractometer with a least count of 0.001 (Make: Optiregion [7]) as shown in
Figure  7  (a)  was  used  to  measure  the  refractive  index  µ of  the  acidic  solution.  This
refractometer  measures the refractive index of the liquid placed between two glass prisms.
Light source is focused at the bottom of the illuminating prism. The refractometer is first
calibrated using plain water. After calibration, the water was wiped using soft, splinter-free
tissue  paper.  Then  the  acidic  solution  was  placed  and  the  refractive  index  measured  by
turning the scale knob to get a clear interface between dark and bright regions. The crosswire
is then moved to the interface and the value of the refractive index is noted.
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(e) A pH meter (Make: Equiptronics, Model: EQ-614A [8]) as shown in Figure 7 (b), was

used along with its  probe  to  measure  the  value  of  pH of  the solution  used to  study the
rainbow angle for each case. 

Figure 5: Schematic diagram (top view) of the experimental setup

Figure 6: Photograph (oblique view) of the experimental setup

                                  
                                 (a)                                                                     (b)
Figure 7: Photograph of the Abbe’s refractometer (a) and the pH meter (b) used in this study
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4. OBSERVATIONS AND MEASUREMENTS
The following process was used to collect the required experimental data.  First the distilled
water was taken in a beaker. Using buffer solutions of pH 4.0, 7.0 and 9.2, the measurement
probe of the pH meter was calibrated. Then the probe was washed and placed in the beaker.
Using micropipette, a few drops of sulfuric acid (H2SO4) (whose concentrated solution was
98% wt./wt.) were added in the beaker and the solution was stirred. Then, a 2 mL syringe was
rinsed with the solution in the beaker. A sample of the solution was taken in the syringe and
the syringe was mounted on the syringe holder. The laser was switched ON and the intensity
of light was reduced using a polarizer and analyzer and then direct beam angle was noted.
Now, a pendent drop was formed at the center of the line of the laser by carefully pressing the
piston of the syringe. The telescope of the prism spectrometer was moved to the positions
where rainbows were forming. The intensity of the laser beam was varied using an analyzer
such that the width of the rainbow was reduced and the angle of the first bright fringe was
noted for both the orders. We thus measured the total  angle of deviation  φ1 and  φ2 for the
acidic solution made using sulfuric acid.

Now syringe was taken out and a few drops from it were placed in the Abbe’s refractometer
and the refractive index µ of the solution was measured. Each time the prism surface inside
the refractometer was cleaned using isopropanol and allowed to dry. Also, the value of pH of
the solution in the beaker was measured using a pH meter. This entire process was repeated
for  several  solutions  with  pH varying  from 7.0  to  0.0.   Further,  the  entire  process  was
repeated for nitric acid (HNO3) whose concentrated solution was 70% (wt./wt.). 

Figure 8  (a) gives the angular  positions  of the first  (on right)  and second (on left)  order
rainbows as seen from top of the syringe mount, and (b) gives the first bright fringe (which is
used for the measurement  of the angle of deviation) and interference fringes as observed
through the telescope for both the orders. These interference fringes are observed because of
the path difference introduced between the emerging rays due to the finite width of the laser
beam which is incident on the drop around a particular angle of incidence [2] for each order. 
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                                   (a)                                                                       (b)
Figure 8: (a) Angular positions of the first and second order rainbow from top of the syringe,

and (b) the interference fringes as observed through the telescope

5. DATA AND RESULTS
Table 1 and Table 2 shows the data collected for the first and second order rainbows for the
acidic solutions made using  H2SO4 and  HNO3. Here, we give the data for measured values
pH, refractive index µ and the values of total angle of deviation φ1 and φ2 measured using a
spectrometer,  for  10  measurements  performed.  Further,  using  Equation  (1)  and  the
experimentally  measured value of refractive index  µ,  we have calculated the theoretically
expected values of deviation φ1 and φ2. These values are also given in the tables. Note that the
telescope focuses at the center of the spectrometer table, since the final rays come out from
the  surface  of  the  drop  which  is  slightly off-center  of  the  spectrometer  table,  hence  the
measured angle of deviation was corrected for this error.

Table 1: Data collected for first and second order rainbow for solutions made with H2SO4

Sr.
No.

pH
Refrac-
tive index
(µ)

For first order ϕ1 /( o) For second order ϕ2 /( o)

Calculated Measured Calculated Measured

1 7.00 1.332 137.776 137.711 230.628 230.849
2 5.36 1.332 137.776 137.757 230.628 230.850
3 4.86 1.331 137.630 137.762 230.365 230.780
4 3.15 1.332 137.776 137.854 230.628 230.790
5 2.61 1.332 137.776 137.917 230.628 230.706
6 2.08 1.332 137.776 137.854 230.628 230.823
7 1.48 1.333 137.922 137.806 230.891 230.901
8 1.03 1.333 137.922 137.972 230.891 231.083
9 0.52 1.335 138.212 138.260 231.414 231.599
10 0.00 1.340 138.929 138.913 232.709 232.923
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Table 2: Data collected for first and second order rainbow for solutions made with HNO3

Sr.
No.

pH
Refractive
index (µ)

For first order ϕ1 / ( o) For second order ϕ2 /( o)

Calculated
Mea-
sured

Calculated Measured

1 7.00 1.332 137.776 137.734 230.628 230.734
2 6.10 1.332 137.776 137.884 230.628 230.417
3 4.05 1.332 137.776 137.628 230.628 230.857
4 3.63 1.332 137.776 137.756 230.628 230.769
5 3.02 1.332 137.776 137.642 230.628 230.817
6 2.03 1.332 137.776 137.862 230.628 230.894
7 1.36 1.333 137.922 137.744 230.891 230.927
8 0.91 1.333 137.922 137.908 230.891 231.260
9 0.58 1.333 137.922 138.040 230.891 231.273
10 0.05 1.337 138.500 138.110 231.934 232.241

We plotted a graph of angle of deviation φ1 and φ2 versus pH for both the acids as shown in
Figure 9 and 10.

Figure 9: Plots of angle of deviation φ1 and φ2 versus pH for the sulfuric acid (H2SO4)

Figure 10: Plots of angle of deviation φ1 and φ2 versus pH for the nitric acid (HNO3)
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From the data shown in Table 1 and 2, we calculated the difference in the measured angle of
deviation and the angle of deviation calculated from the measured value of the refractive
index and Equation (1). Table 3 shows this data for the acidic solutions made with both the
acids.

Table 3: Difference in the angle of deviation

For acidic solution
made with

Calculated difference for Measured difference for

first order second order first order second order
H2SO4

(pH 7.00 to 0.00)
1.153° 2.081° 1.202° 2.074°

HNO3

(pH 7.00 to 0.05)
0.724° 1.306° 0.376° 1.507°

6. CONCLUSION
We studied the rainbow formation in a single pendent drop of acidic solution in a laboratory
set-up and measured the variation of the angle of deviation of the rainbow with the value of
pH of the solution of the drop. It was observed that for sulfuric acid, as the pH varied from
7.0 to 0.0, the angle for the first order rainbow varied from 137.711° to 138.913° and for the
second order from 230.849° to 232.923. For nitric acid,  the angle for first order rainbow
varied from 137.734° to 138.110° and for the second order from 230.734° to 232.241, for pH
varying from 7.0 to 0.05. Our results show that there is relatively small change in the rainbow
angle with variation of pH of the acidic solution of the drop in the typical range for the acid
rain (pH of about 4.0 to 5.5). However, strong acid rains can be identified by making simple
observations of rainbow angle in the sky. Further, even within the normal range of acidity,
with accurate measurements of rainbow angle, one may be able to detect acid rain and get an
estimate of the acidity or pH remotely.
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OBITUARY

Prof. Steven Moszkowski

Prof. Steven Moszkowski passed away on December 11, 2020. The lifespan of Prof. Steven Moszkowski

almost overlapped the advent of Nuclear Physics as a subject in 1940s up to the present time. He has

enriched the subject by his profound contributions for almost 70 years. His earliest work in 1950s on the

study of the saturation properties of nuclear matter known as MS separation method (Moszkowski and

Scott)  was  a  landmark  fundamental  contribution.  The  important  problem of  the  incompressibility  of

nuclear matter was recalculated by him and his collaborators and was found to be 290MeV,  significantly

different from the accepted value of 230MeV. During his later years, he was deeply engrossed in solving

the problem of saturation properties at a fundamental level using the 3-body force. He passed away before

he could see the solution of this perennial problem in nuclear physics. 

Prof.  Moszkowski  was  deeply  associated with  Student  Journal  of  Physics  (SJP)  as  a  member  of  its

International  Advisory  Board.  Being a  first-rate  teacher  and researcher  in  Physics  all  along his  life,

welfare of students, their cultivation of innovation and creativity was close to his heart. His passionate

advice and suggestions to SJP for its development have greatly helped its progress in its formative period.

His demise is a great loss to SJP.
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