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Abstract. In this work, we attempt to study the nuclear structure properties of the Pt isotopic chain in the

framework of Hartree-Fock-Bogoliubov (HFB) theory. HFB theory is a Self-Consistent Mean Field (SCMF)

model1 that combines the nuclear mean-field Hartree-Fock (HF) theory and the Bardeen-Cooper-Schrieffer

(BCS) theory that explains nuclear pairing correlations. We investigate the ground-state properties of the even-

even isotopic chain 166−260Pt. These include the binding energy per nucleon, two-neutron separation energy,

quadrupole deformation, proton, neutron and charge radii and neutron skin thickness. We also studied the

dependence of neutron skin thickness on the temperature of the system. The code HFBTHO v2.00d2 that solves

the Skyrme HFB equations in the deformed harmonic oscillator basis was used to perform the calculations.
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1. INTRODUCTION

Hartree-Fock-Bogoliubov (HFB) theory is essentially a self-consistent framework generalizing the

Hartree-Fock (HF) theory that describes the nuclear mean-field and the Bardeen-Cooper-Schrieffer

(BCS) theory that explains nuclear pairing correlations [3]. HFB theory is considered a more general

framework for the description of the nuclei than BCS theory as the single-particle wave functions

and energies are specified beforehand in the BCS theory in terms of phenomenological mean-field

potential, whereas HFB theory incorporates the complete HF theory with the relaxation of particle

number conservation [4]. Also a single self-consistent theory was necessary while considering nu-

clei far from stability as the pairing correlations near the drip lines couldn’t be accounted for merely

as a residual interaction. In Hartree-Fock-Bogoliubov theory the state of the system is specified by

two operators - the one-particle density matrix ρ which is the same as in Hartree-Fock theory and the

pairing density matrix κ that describes the Cooper pairing effect [5]. In this work, we have studied

the ground state properties of the even-even 166−260Pt isotopic chain by employing the HFB solver

HFBTHO v2.00d [2].
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2. THEORETICAL FRAMEWORK

In this section, we briefly describe the Skyrme-Hartree-Fock-Bogoliubov formalism. In second

quantization, the general two-body Hamiltonian is written in terms of the particle creation and anni-

hilation operators (a†, a) as:

H =
∑

mn

emna
†
man +

1

4

∑

mnpq

v̄mnpqa
†
ma†napaq (1)

where v̄mnpq = 〈mn|V |pq − qp〉 are the anti-symmetrized two-body interaction matrix elements

[6]. The Bogoliubov transformation [7] of the particles to quasi-particles [8] has the form:

(

η†

η

)

=

(

UT V T

V ∗ U∗

)(

a†

a

)

(2)

U and V are the coefficients that transform the single-particle states (n) into quasi-particle states

(µ). In the HFB calculations the nuclear ground-state wavefunction is defined as the quasi-particle

vacuum i.e., action of quasi-particle annihilation operator on the wavefunction satisfies ηµ|φ〉 = 0.

We define the one-body density matrix ρ and pairing density matrix κ as follows:

ρmn = 〈φ|a†nam|φ〉 =
∑

µ

VnµV
∗
mµ

κmn = 〈φ|aman|φ〉 =
∑

µ

UmµV
∗
nµ

(3)

Performing the variation of energy in eq. (1) with respect to ρ and κ gives the HFB equations:

(

e+ Γ− λ ∆

−∆∗ −(e+ Γ)∗ + λ

)(

U

V

)

= E

(

U

V

)

(4)

where

Γij =
∑

kl

v̄ikjlρlk and ∆ij =
1

2

∑

kl

v̄ijklκlk . (5)

The finite temperature HFB equations has a similar form except for the density matrices that now

depend on the Fermi-Dirac occupation factor fµ of the quasi-particle states µ [2].

ρ = UfUT + V (1− f)V T

κ = UfV T + V (1− f)UT
(6)

The HFB energy can be written as:

E[ρ, ρ̃] =

∫

H(∇) ⌈∋∇ (7)
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where H(∇) is the local energy density as a function of nuclear densities and their derivatives with

time-reversal symmetry. In the Skyrme-HFB approach, the total binding energy is given as a sum

of the kinetic energy, the interaction energy between nucleons given by the Skyrme energy density

functional, the pairing energy, the Coulomb energy and the correction arising from the spurious

motion.

E = Ekin +

∫

εSk d
3r + Epair + Ecoul − Ecorr (8)

For even-even nuclei, the Skyrme energy density functional takes the form [2]

εSk[ρ] = C
ρρ
t [ρ]ρ2t + C

ρτ
t [ρ]ρtτt + CJ2

t [ρ]J2
t + C

ρ∆ρ
t [ρ]ρt∆ρt + C

ρ∇J
t [ρ]ρt∇ · Jt (9)

with τt and Jt being the kinetic energy density and the spin-current respectively. The coupling

constants Cuu′

t are functions of local isoscalar density ρ0(r) which are fitted to the data. We consider

pairing correlations to arise from contact delta forces and hence the pairing energy density is given

as

Epair =
1

2
V0

[

1− V1

(

ρ

ρ0

)γ]
∑

q

ρ̃2q (10)

where ρ̃ is the pairing local density with the index q labeling the neutron (q = n) or the proton

(q = p). V0 and V1 are the coupling constants for pairing interaction.

The protons also experience a Coulomb potential due to their electric charges and hence the

energy density will also have contributions from the Coulomb energy. The Coulomb energy has an

exchange term apart from the usual direct term. The exchange term arises from the anti-symmetric

nature of fermionic wavefunctions and is calculated using Slater approximation.

Edir
Coul =

e2

2

∫∫

d3rd3r′
ρch(r)ρch (r′)

|r− r
′|

(11)

Eex
Coul = −

3

4
e2
(

3

π

)1/3 ∫

d3rρ
4/3
ch (r) (12)

This form of the Energy Density Functional (EDF) can be used in the HFB equation obtained in eq.

(4) to give the Skyrme-Hartree-Fock-Bogoliubov equations.
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3. RESULTS

Figure 1. The (a) binding energy per nucleon, (b) two neutron separation energy, (c)

the quadrupole deformation parameter, β2 and (d) the charge radii calculated for the

even-even isotopic chain 166−260Pt are plotted as a function of neutron number, N

along with the experimental values [10–12].

Figure 1 shows the ground state properties of Pt isotopic chain, the binding energy per nucleon, the

two-neutron separation energy, the quadrupole deformation parameter and the charge radii obtained

using the Skyrme parameter set SLY4 [9]. We have used SLY4 parameterization as it was developed

to give accurate results for neutron matter and nuclei far from stability. The calculated values are

found to agree well with the experimental observations [10–12].

The binding energy per nucleon for the isotopic chains 166−260Pt are found to be within a range

of 0.05 MeV of the experimental values. The difference is lower near the drip lines suggesting that

SLY4 parameterization works well near the drip lines which was expected.

The two-neutron separation energy of a nucleus is defined as the energy required to separate two
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neutrons from the nucleus. A sharp decrease is found in the value of two-neutron separation energy

at the magic number 126. Thus, it requires large energies to disrupt magic nuclei.

The quadrupole deformation β2 of the nucleus is a general measure of its shape about the axially

symmetric axis and determines the value of other parameters like quadrupole moment. The calcu-

lated values validate the fact that magic nuclei are generally spherical with β2 = 0. This can be seen

here for the magic neutron number 126.

The charge radius of a nucleus is defined as:

Rch =
√

R2
p + 0.64 . (13)

This depends on the proton radius (Rp) and is usually a measure of the size of the nucleus. The

charge radius indicates the proton distribution within the nucleus.

The proton radii and neutron radii are defined as the root mean square values of the respective

density distributions.

< R2
q >=

∫

r2ρq(~r, T )d~r
∫

ρq(~r, T )d~r
(14)

Here, the densities are normalized to give the respective particle numbers,

∫

ρq(~r, T )d~r = Q, Q = Z,N ; and T represents the temperature. (15)

Thus, the proton and neutron radii are:

Rn =< R2
n >1/2 Rp =< R2

p >1/2 (16)

The proton and neutron radii are calculated for the even-even isotopic chain 166−260Pt. Owing to the

increasing number of neutrons as the mass number increases we also find an increase in the neutron

radius.

The neutron skin thickness is an important parameter in nuclear physics, especially for exotic

nuclei. This is defined as the difference between the neutron radii and the proton radii. We observe

that the neutron skin depth increases with the neutron number and hence obtain an outer crust for

heavier isotopes that is devoid of the protons, often called the neutron skin. So neutron-rich nuclei

are often considered as an interesting tool, which connects finite and infinite nuclear matter. Here, we

investigate the dependence of neutron skin thickness on the temperature. Fig. 2 shows the neutron

skin thickness as a function of neutron number, N for different temperatures. The neutron skin

thickness increases markedly with the increase in temperature. Hence, temperature plays a crucial

role in neutron skin formation. This can be attributed to the occupation probabilities of the single-

particle states around the Fermi level that varies with temperature [13]. As temperature increases

higher unoccupied energy levels tend to be occupied causing larger proton and neutron radii. This

leads to an increase in the neutron skin thickness.
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Figure 2. Neutron skin thickness as a function of neutron number, N at temperatures

T = 0 MeV, T = 2 MeV and T = 4 MeV calculated for the even-even isotopic chain
188−222Pt.

4. CONCLUSION

We have calculated the ground-state as well as the excited state properties of the 166−260Pt isotopic

chain using Skyrme-Hartree-Fock-Bogoliubov theory. Our results are in good agreement with the

available experimental data. Further, we would like to extend our work to more systems, both finite

nuclei and infinite nuclear matter, and the work is under progress.
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