
STUDENT JOURNAL OF PHYSICS c© Indian Association of Physics Teachers

A Study on Nuclear Pairing using BCS Theory

Nabeel Salim and A.K. Rhine Kumar

Department of Physics, Cochin University of Science and Technology, Kochi - 682022, India. ∗

Abstract. Pairing correlation in nuclei is recognized as the dominant many-body correlation beyond the nu-

clear mean-field. It was suggested by the occurrence of nuclear phenomena like the odd-even mass staggering

(OES) and an energy gap of 1-2 MeV between the ground state and the lowest single-particle excitation. In this

work, we have studied the temperature dependence of the pairing gap in 94Sr & 120Sn1,2. The single-particle

energies are calculated using the Nilsson Model and the pairing strength (Gp,n) by equating the pairing gap

to the empirical pairing gap. The average pairing gap is found to vanish after the critical temperature. In the

case of 120Sn the proton pairing is found to be exactly zero at all temperatures (magic nuclei). The empirical

pairing gap is extracted from OES3. The five-point formula is used for a global calculation of both proton and

neutron pairing gap over the entire nuclear landscape, with the binding energy data taken from the Atomic Mass

Evaluation 20204. The empirical pairing gap data is grouped into four categories; even-even, odd-neutron, odd-

proton and odd-odd. Each group is fitted with a power function aZb and aN b for proton and neutron pairing

respectively and the parameters are found. The overall fit in mass number (A) shows the power (b) to be − 1

3

rather than the − 1

2
from the accepted 12/

√
A law.
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1. INTRODUCTION

Pairing plays a crucial role in superconducting solids where it was first introduced by Bardeen,

Cooper and Schrieffer [5]. This same theory was developed in the case of nuclei by Bohr, Mottelson

and Pines [6] and Belyaev [7]. Bardeen, Cooper and Schrieffer (BCS) theory gives an approximate

wave function for the pairing Hamiltonian and can be used to explain well-bound nuclei. In BCS

theory two nucleons with the same quantum numbers except for the projection of their spin on the

same axis interact attractively leading to a lower energy state. In section 2 we derive the FTBCS

gap equation from the grand potential [1,2]. This gap equation along with particle number equation

can be solved numerically and study the change in pairing gap with temperature. The empirical

pairing gap can be calculated from odd-even mass staggering (OES) [3,8]. In section 3.1, the proton

and neutron pairing gap of 94Sr & 120Sn are calculated using the finite temperature BCS equation

∗nabeel.salim12@gmail.com

8



A Study on Nuclear Pairing using BCS Theory

(FTBCS) . In section 3.2, we present the neutron and proton pairing gaps at zero temperature, these

data are fitted with a power function aZb and aN b for proton and neutron pairing respectively. The

fitted parameters are given in Tables 1 & 2.

2. THEORETICAL FRAMEWORK

BCS theory was the first microscopic theory of superconductivity developed in 1957 [5]. It explained

superconductivity in metals as the effect of condensation of Cooper pairs, which is the pairing of

electrons near the Fermi level through the interaction with the crystal lattice. This coupling inter-

action is mediated by phonons. In BCS theory pairing takes place between electrons with opposite

momenta and opposite spin (+k up,−k down). The pairs overlap strongly and form a condensate.

Similar phase transition behaviour is observed in atomic nuclei. In the case of nuclei, compared

to a superconducting metal, it is finite and small. Secondly, there is not yet a reliable microscopic

nuclear many-body theory where one can derive the pairing interaction and its strength. So to write

the Hamiltonian of a nuclear system, we consider a single-particle model of non-degenerate orbitals

ν (n, l, j,mj). The pairing Hamiltonian of a system of nucleons interacting with the pairing force

and having zero total angular momentum is written as follows [1,2].

Ĥ =
∑

ν>0

(eν − λ− Eν) + 2
∑

ν>0

Eνfν +
∆2

G
(1)

Where G is the constant pairing strength, ∆ is the pairing gap, λ is the Lagrange multiplier and also

the chemical potential, eν is the single-particle energy, Eν is the quasi-particle energy and fν is the

Fermi-Dirac distribution function for quasi-particles.

Eν =

√

(eν − λ)
2
+∆2 (2)

fν =
1

1 + eβEν

(3)

The grand potential is defined as

Ω = ln
(

Tr
{

exp(−βĤ)
})

(4)

By substituting Eq. (1) in Eq. (4) we get.

Ω = −β
∑

ν>0

(eν − λ− Eν) + 2
∑

ν>0

ln [1 + exp(−βEν)]− β
∆2

G
(5)

The standard choice for the gap parameter (∆) is the value that minimizes the grand potential (Ω),

so by minimizing Ω we get the finite temperature BCS gap equation.

∂Ω

∂∆
= β

∑

ν>0

∆

Eν
− 2

∑

ν>0

exp(−βEν)

1 + exp(−βEν)

β∆

Eν
− 2β

∆

G
= 0 (6)
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∑

ν>0

1

Eν

(

1− 2
exp(−βEν)

1 + exp(−βEν)

)

=
2

G
(7)

The expression inside the bracket of Eq. (7) can be simplified as tanh
(

βEν

2

)

2

G
=

∑

ν>0

1

Eν
tanh

(

βEν

2

)

(8)

Similarly, the particle number expression can be derived from grand potential Ω.

N =
∂Ω

∂α
(9)

Where α = βλ

N =
∑

ν>0

[

1−
(eν − λ)

Eν
tanh

(

βEν

2

)]

(10)

Eq. (8) & Eq. (10) can be solved numerically. The dependence of ∆ on T can be found. For a

particular temperature, ∆ becomes zero and is called critical temperature Tc. So ∆ varies from

∆0 → 0 as T varies from 0 → Tc.

3. RESULTS

3.1 FTBCS pairing gap

The pairing gap is calculated for 94Sr & 120Sn. We have found the single-particle energies of the

nuclei from the Nilsson model. The maximum effect of pairing happens at T = 0 MeV, this is found

by OES. The energy levels which are affected by the pairing are taken in summation which is close

to the Fermi level. The levels are fixed and the pairing strength is adjusted so that the pairing gap

matches the empirical odd-even staggering at T = 0 MeV.

3.1.1 Strontium - 94Sr

The proton pairing strength (Gp) of 94Sr can be found by adjusting the proton pairing gap at zero

temperature (∆p(0)) to OES, which gives Gp = 0.2803 MeV and ∆p(0) = 1.4961 MeV. Similarly,

we get Gn = 0.18604 MeV and ∆n(0) = 1.0059 MeV. The energy levels taken are N1 = 4, N2 =

35 and N1 = 14, N2 = 45 respectively. Where N1&N2 are lower and upper limits of the energy

levels taken in the FTBCS equations.

3.1.2 Tin - 120Sn

In the case of 120Sn, Z = 50 is a magic number (closed shell), there is no proton pairing due to

the shell closure. Where as the neutron pairing is present as N = 70, the Gn value of 120Sn can be
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found by adjusting ∆n(0) to OES, which gives Gn = 0.2019 MeV and ∆n(0) = 1.3918 MeV. The

energy levels taken are N1 = 10, N2 = 41 and N1 = 18, N2 = 52 respectively.

Figure 1. The variation of proton and neutron pairing gaps in 94Sr nucleus with the

temperature is presented. The critical temperature, Tc = 0.8282 MeV for proton pair-

ing and Tc = 0.5455 MeV for neutron pairing.

Figure 2. Same as Fig. 1, but for the nucleus 120Sn. The critical temperature,

Tc = 0.7273 MeV for neutron pairing and no proton pairing.

3.2 Empirical pairing gap

The empirical pairing gap is found using the five-point formula given in [3,8]. The binding energy

data is taken from Atomic Mass Evaluation 2020 [4]. Neutron and proton pairing gaps are evaluated

separately and fitted with function aXb where X=N,Z respectively. Then the average pairing gap
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is found and fitted with function aAb. Where a & b are fitting parameters. We exclude nuclei with

a mass number (A) less than 16. In Figures 3 & 4 pairing gaps are fitted to neutron and proton

numbers respectively. The numerical values of the fitting parameters are included in Tables 1 & 2.

Figure 3. The neutron pairing gap of the following nuclei are calculated and fitted.

(a) Even-even nuclei (∆e−e
n ). (b) Odd-neutron nuclei (∆o−n

n ). (c) Odd-proton nuclei

(∆o−p
n ). (d) Odd-odd nuclei (∆o−o

n ). The black dash-dotted line is determined by

fitting to the data using the function aN b.

Figure 4. The proton pairing gap of the following nuclei are calculated and fitted.

(a) Even-even nuclei (∆e−e
p ). (b) Odd-neutron nuclei (∆o−n

p ). (c) Odd-proton nuclei

(∆o−p
p ). (d) Odd-odd nuclei (∆o−o

p ). The black dash-dotted line is determined by

fitting to the data using the function aZb.
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Table 1. The fittings of empirical neutron pairing gaps in even-even, odd-N, odd-Z

and odd-odd nuclei from five point formula as functions of N and the corresponding

root-mean-square deviation and coefficient of determination R2 (with 95% confidence

bounds).

Group of

Nuclei

Number of

Nuclei

parameter of the pairing

gap function aN b

RMS

Deviation (σ)

R square

a ±∆ a b ±∆ b

Even-even 424 5.682± 0.221 −0.373± 0.011 0.341 0.741

Odd-Neutron 384 22.124± 1.584 −0.713± 0.018 0.317 0.830

Odd-Proton 445 2.377± 0.024 −0.224± 0.002 0.236 0.935

Odd-odd 410 6.764± 0.473 −0.496± 0.011 0.234 0.640

Table 2. The fittings of empirical proton pairing gaps in even-even, odd-N, odd-Z

and odd-odd nuclei from five point formula as functions of Z and the corresponding

root-mean-square deviation and coefficient of determination R2 (with 95% confidence

bounds).

Group of

Nuclei

Number of

Nuclei

parameter of the pairing

gap function aZb

RMS

Deviation (σ)

R square

a ±∆ a b ±∆ b

Even-even 378 5.211± 0.195 −0.362± 0.011 0.340 0.737

Odd-Neutron 378 1.886± 0.108 −0.175± 0.017 0.265 0.233

Odd-Proton 339 8.223± 0.482 −0.476± 0.016 0.309 0.743

Odd-odd 346 1.293± 0.063 −0.027± 0.014 0.219 0.010
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4. CONCLUSION

The dependence of temperature on the pairing is studied using the finite-temperature BCS theory.

We have plotted the average pairing gap with temperature for 94Sr & 120Sn. The G value (Pairing

strength) for protons is found to be greater than neutrons as expected. The proton pairing is larger

than neutron pairing as it is equated to OES. The proton pairing of 120Sn is found to be zero which is

exact for low pairing strength as Tin is a magic nucleus in proton number. The critical temperature

on average is also related to ∆0 as Tc = 0.53∆0 for neutron and proton pairing. Above these critical

temperature we found that the pairing to be zero.

We have calculated empirical nuclear pairing using the five-point formula and fitted it with a

power function. The five-point formula reduces most of the effects from the persisting mean-field

than the previously used three-point formula. A global calculation for both proton and neutron

pairing gap over the entire nuclear landscape has been performed with the binding energy data from

Atomic Mass Evaluation 2020 [4]. From these fits, we found that except for the proton pairing

of odd-neutron nuclei (Fig. 4 (b)) and odd-odd nuclei (Fig. 4 (d)), the power function is giving

a very good fit. The poor fit for these cases may indicate the presence of a constant term in the

fitted function. We haven’t checked the dependence of neutron excess (N − Z) in pairing. An

overall fit corresponding to all nuclei groups to a function of mass number (A) is fitted. The result

is (4.609± 0.014)A−0.33 which is a − 1

3
dependence rather than the − 1

2
from the accepted 12/

√
A

law. This implies a weaker dependence on pairing gap than the usual [9], and The current result

supports a − 1

3
law [10].
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