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Abstract. The density-dependent symmetry energy depicts the energy difference between the binding energy

of symmetric nuclear matter and pure neutron matter, which is associated with various phenomena such as

exotic nuclei, heavy ion-collision experiments, supernovae, and gravitational collapse in neutron stars. In this

theoretical work, we study the isospin-dependent properties of finite nuclei, namely symmetry energy, surface

symmetry energy, volume symmetry energy, and their ratio κ from their corresponding components available in

the infinite nuclear matter using the coherent density fluctuation model. We have performed the calculations for

a few even− even isotopes of Titanium for the non-linear NL3 parameter set within the purview of relativistic

mean-field formalism. This study provides theoretical understanding and computational steps for analyzing the

magicity of Titanium nuclei which can be extended to different sets of nuclei across the nuclear landscape.

Communicated by Prof. S.K. Patra

1. INTRODUCTION

While moving across from nuclear landscape from stable to unstable exotic nuclei, the appearance

of newer magic numbers and the disappearance of others can be observed owing to the distinct

constituents of the nucleon-nucleon interaction. Some of these nuclei have widely different nuclear

configurations than those predicted from early nuclear models. These nuclei can have extreme values

of neutron-proton asymmetry (also referred as isospin-asymmetry) which is given as δ = (ρn −

ρp)/ρ, where ρn and ρp are the neutron and proton densities respectively and ρ = ρn + ρp is the

baryon density. The ρ− meson term handles the density type isospin, whereas the δ− meson handles

the mass asymmetry.
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The fundamental problem of understanding nuclear physics involving isospin is describing the

equation of states (EOS) in terms of binding energy per nucleon

E(ρ, δ) = E(ρ, 0) + Esym(ρ)δ2 +O(δ△)....., (1)

The term E(ρ, 0) refers to energy in a symmetric nuclear matter which depends on the total density,

i.e., the sum of neutron and proton densities. Esym(ρ) refers to the density-dependent nuclear sym-

metry energy (NSE). δ4 is found to be very small and can be safely ignored [1,2] and thus, the EOS

can be described using the parabolic equation. The study of NSE has a profound research interest

in the field of nuclear astrophysics. It is used to characterize both the finite and infinite asymmetric

nuclear matter. However, proper study related to the density-dependence of symmetry energy is still

in a nascent stage. Recently Bhuyan et al. [3-7] have successfully studied various density-dependent

symmetry energy properties using the relativistic mean-field formalism, providing a newer direction

in this field. Moreover, the availability of radioactive ion beam (RIB) and its advances in measure-

ments of exotic nuclei has given experimental support and stimulated theoretical research projects

towards understanding the properties related to nuclear symmetry energy.

The structure of the paper is as follows: The theoretical formalism pertaining to the relativistic

mean-field formalism is discussed in Section 2.1. We then present the need and derivation for cal-

culating the symmetry energy and its related parameter using the coherent density fluctuation model

in Section 2.2. Section 3 provides a flowchart detailing the steps for creating the required program.

Finally, we present the calculations and a brief discussion of the result for nuclear symmetry energy,

surface, and volume symmetry energy for Titanium nuclei in Section 4.

2. METHODOLOGY

2.1 Relativistic mean-field formalism

The relativistic mean-field (RMF) formalism has various advantages corresponding to its non-

relativistic counterparts [8-12]. The RMF formalism includes the presence of spin-orbit interaction

in the relativistic equations. This method has successfully reproduced the bulk properties of finite

nuclei such as binding energy, quadrupole moment, charge radius, etc., throughout the mass table. It

also considers some of the meson-nucleon coupling parameters, which successfully reconciles with

the experimental data. Moreover, the nuclear equation of state and properties associated with neu-

tron stars can be studied using this formalism. A generalized expression of non-linear finite-range

RMF model having typical Lagrangian density takes the form as

L = ψ{iγµ∂µ −M}ψ +
1
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Here the fields for the electromagnetic, ρ, σ and ω meson is depicted as Aµ, ~ρµ, σ and ωµ respec-

tively. Moreover, ~Bµν , Ωµν and Fµν are the field tensors corresponding to the ~ρµ, ωµ and photon

fields respectively.

Within RMF formalism, the simplistic expression of nuclear symmetry energy can be written as:

SNM (ρ) =
1

2

∂2(E/ρ)

∂α2

∣

∣

∣

∣

α=0

, (3)

where E is the energy density and α corresponds to the neutron-proton asymmetry in terms of baryon

density. Following Ref. [3, 13-16] the mesons coupling corresponding to the fields of nucleons can

be given as

gi(ρ) = gi(ρsat)fi(x)|i=σ,ω. (4)

Here

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
, (5)

and

gρ = gρ(ρsat)e
aρ(x−1), (6)

where x = ρ/ρsat. The term ρsat refers to saturation density of nuclear matter.

This project involves the use of baryon densities from the relativistic mean-field approach for a

specific parametrization to calculate the value of symmetry energy. We have chosen the most popu-

lar and well-known NL3 parameter set for our endeavour because it has proven to reproduce nuclear

saturation properties that are in excellent agreement with the present experimental data throughout

the periodic table [4-5, 17-19] and references therein. The main task was then to create a program

from scratch which could calculate the isospin dependent properties of finite nuclei such as symme-

try energy and the different parameters directly associated with it, namely volume symmetry energy,

surface symmetry energy, and their ratios κ at local density.

2.2 Coherent density fluctuation model

The symmetry energy is a property associated with infinite nuclear matter which is defined in mo-

mentum space, whereas finite nuclei is defined in coordinate space [20-24]. Experimentally it is not

possible to observe the symmetry energy. However, we can evaluate this property using observables

related to it. For this task, different models were proposed, including liquid drop model (LDM)

[25], coherent density fluctuation model (CDFM) [21,22], etc. The nuclei in the LDM are assumed

to be macroscopic drops of nuclear matter in the form of liquid which is incompressible. This model

accounts for the short-range nuclear interactions as well as the nuclear matter saturation property.
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According to this, for a finite nucleus, the symmetry energy is strongly correlated with the surface

contribution, which implies that a single parameter for all nuclei that are fitted may yield only the

average values. Therefore, for evaluating symmetry energy, one needs to take into account the con-

tribution owing to the mass number. However, using additional parameters turns out to be a difficult

task in known nuclei, which has a constrained range. Therefore, alternative models for symmetry

energy calculation are much needed. The CDFM is one such model that is built upon the Fermi gas

model, which has the generator coordinate with long-range collective type correlations. This model

was developed by Antonov et al. [20,21]. It has successfully calculated the density distribution,

ground and excited state root-mean-square (rms) radius for different nuclei, namely 4He, 16O, 40Ca,

etc. There are many advantages attributed to using CDFM. Firstly, CDFM automatically accounts

for fluctuations present due to the density distribution by using the weight function. Secondly, the

fluctuations attributed to momentum distribution close to the surface are taken care of using the

Wigner distribution function (or mixed density matrix). The one-body density matrix (OBDM)

ρ(r, r) can be represented by another OBDM that has coherent superposition ρx(r, r) corresponding

to the fluctons (spherical pieces of nuclear matter).

ρx(r) = ρ0(x)Θ(x− |r|), (7)

Here, ρx(r) is the diagonal part of the OBDM and ρ0(x) is the spherical flucton density which is

expressed as ρ0(x) = 3A
4πx3 . According to the definition of density matrix, one particle density

is given by its diagonal elements [26]: ρ(r) = ρ(r, r’)|r’→r. Thus, the infinite superposition of

spherical fluctons defined for generator coordinate with radius x containing the Fermi gas of all

uniformly distributed nucleons with mass A, the OBDM then takes the form as [22,26]:

ρ(r, r’) =

∫ ∞

0

dx|F(§)|∈ρ§(r, r’). (8)

The term F(§)|∈ is called as the weight function where ρx(r, r
′) depicts the coherent OBDM super-

position which is described as:

ρx(r, r
′) = 3ρ0(x)

J1(kF(x)|r− r
′|)

(k
F
(x)|r− r

′|)
×Θ

(

x− |r+r
′|

2

)

. (9)

The Bessel function J1 has the order as one. The term kF (x) depicts Fermi momentum for radius x

of the flucton given as

kF (x) =

(

3π2

2
ρ0(x)

)1/3

≡
β

x
, (10)

where

β =

(

9πA

8

)1/3

≃ 1.52A1/3. (11)
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The Wigner distribution function corresponding to OBDM is given as

W (r,k) =

∫ ∞

0

dx|F(§)|∈W§(r,k), (12)

where Wx(r,k) = 4
8π3Θ(x − |r|)Θ(kF (x) − |k|). Similarly applying the CDFM approach, the

density term ρ(r) can be stated as

ρ(r) =

∫

dkW (r,k)

=

∫ ∞

0

dx|F(§)|∈
∋A

△π§∋
×(§ − |r|). (13)

|F(§)|∈ = −

(

∞

ρ′(§)

⌈ρ(∇)

⌈∇

)

∇=§

. (14)

The normalization of weight function is given as
∫∞

0
dx|F(§)|∈ = ∞. Using Ref. [3, 22, 27,

28], the expression of symmetry energy for asymmetric nuclear matter as a function of ρ0(x) takes

the form

SNM = 41.7ρ
2/3
0 (x) + b1ρ0(x) + b2ρ

4/3
0 (x) + b3ρ

5/3
0 (x). (15)

Here b1, b2 and b3 are constants derived from the method of Bruckner et al. [29, 30] having the

values given as

b1 = 148.26,

b2 = 372.84,

b3 = −769.57.

(16)

The expression for effective symmetry energy for asymmetric nuclear matter S from CDFM can be

stated as [3, 22, 27, 28]:

S =

∫ ∞

0

dx|F(§)|∈SNM(§). (17)

Brueckner’s energy density functional method suggests that in some areas the symmetry energy

shows negative values, which is physically not possible. So to avoid such non-physical negative

values of symmetry energy, one needs to set proper limits of integration in the Eq. 17. This is one of

the most crucial parts of programming. Following Ref. [23], we first introduce the minimum value of

nuclear distance xmin at which symmetry energy for asymmetric nuclear matter changes sign from

negative value (at x < xmin) to positive value (at x > xmin). For x < xmin the value of weight

function is nearly zero, which implies that no contribution to the symmetry energy is supplied in this

region. Moreover, it is required to introduce the value of xmax beyond which the weight function

contribution to symmetry energy is negligible. This is done by first defining ∆x = xmax − xmin.
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Later we put the constraint for the value of xmax to be the point at which S−S∆x ≤ 0.1 MeV. Here

the term S∆x is evaluated using the Eq. 17. Thus, the expression in Eq. 17 can be better written as

S =

∫ xmax

xmin

dx|F(§)|∈SNM(§). (18)

Using the Bethe-Weizsãcker LDM, the symmetry energy can be expressed in terms of surface and

volume components which can be stated as [31],

S =
SV

1 + SS

SV

A−1/3
=

SV

1 + 1
κA1/3

(19)

The term κ ≡ SV

SS

is defined as the ratio of volume and surface symmetry energy. One can evaluate

the volume and surface components of symmetry energy separately as

SV = S

(

1 +
1

κA1/3

)

(20)

and

SS =
S

κ

(

1 +
1

κA1/3

)

, (21)

Following Ref. [32,33] it is possible to find the expression of symmetry energy S and κ as a function

of nuclear saturation density ρ0 within the CDFM formalism as

S = S(ρ0)

∫ ∞

0

dx|F(§)|∈
[(

ρ(§)

ρ′

)γ]

, (22)

and

κ =
3

Rρ0

∫ ∞

0

dx|F(§)|∈§ρ′(§)

[(

ρ′

ρ(§)

)γ

−∞

]

. (23)

The term S(ρ0) is the symmetry energy at saturation density, and R is the nuclear matter radius.

It is crucial to note here that the term ρ0 corresponds to nuclear saturation density, whereas ρ0(x)

corresponds to spherical flucton density as a function of nuclear distance (x). Here γ parameter is

chosen to be 0.3, as it is consistent with the various experimental results [32-34]. Using the same

integration limits of symmetry energy i.e. xmin and xmax, we next evaluate the value of κ from Eq.

23. This permits us to finally evaluate the value of volume symmetry energy and surface symmetry

energy by following Eqs. 20, 21 respectively. Thus, the computational steps can be summarized

as follows: first, one needs to evaluate the symmetry energy within the proper limits using Eq. 18.

Subsequently, one needs to find the κ using the Eq. 23. Finally, volume and surface symmetry

energy can be evaluated using Eq. 20 and 21 respectively.
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3. Flowchart
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4. RESULTS AND CONCLUSION

In this section, we provide the results and brief discussions related to symmetry energy and its related

components, namely volume and surface symmetry energy along with their ratio κ for neutron-rich

even − even Titanium isotopes using the relativistic mean-field model for the NL3 parameter set.

The coherent density fluctuation model is used to translate the nuclear matter quantities at local

density. In other words, the CDFM is used to obtain a transparent relationship for the quantities

corresponding to the intrinsic analytical equation of states while using a simple approach to the

weight function [24]. The expression of weight function F(§)∈ given in Eq. 14, may seem to be of

simple nature. However, this expression provides a pathway to correlate the infinite matter quantities

such as symmetry energy and its related surface and volume components existing in momentum

space to that of the corresponding finite nuclear quantities in the coordinate space. Within the

relativistic mean-field model, the symmetry energy, which is a quantity of infinite nuclear matter,

can directly be calculated for any finite nucleus from the difference of isoscalar and isovector parts of

the energy density functional. This questions the need to implement the CDFM model instead of the

relativistic mean-field equation to calculate the symmetry energy for finite nuclei. It can be owed

to the fact that many parameters such as pairing, shell corrections and other meson interactions

are unaccounted for when performing the calculations for the finite nuclei, which leads to poor

description of the symmetry energy in finite nuclei. To counter this problem, CDFM provides a

uniform description of finite nuclei similar to infinite nuclear matter through the primary assumption

of nuclear matter as spherical pieces of nuclear matter known as fluctons [35]. For calculating the

value of symmetry energy at local density, we need to obtain the values of total density (sum of

neutron and proton density) as a function of nuclear distance. We have plotted the total baryon

density distribution, i.e., the sum of proton density ρp and neutron density ρn as a function of

nuclear distances, for few Titanium nuclei based on NL3 parameter in Fig 1. A similar characteristic

of nuclear density is observed for all the presented nuclei.

After finding the values of total baryon density as a function of nuclear distance, we use the

CDFM to find the value of weight function F(§)∈ from Eq. 14 for each of the isotopic nuclei. It

can be observed that the magnitude of the weight function is always less than one. The plot of total

densities as a function of nuclear distance for some of the nuclei is given in Fig. 1. A thorough

investigation of Fig. 1 suggests that an increase in proton number (Z) yields slight enhancement

in the surface region. Hence, effective nuclear matter quantities can be understood by using the

total density distribution. The plot of weight function F(§)∈ as a function of nuclear distance is

provided in Fig. 2. Some inference based on Fig. 2 can be drawn, which states that the shape of

weight function corresponds to a bell shape having maximum density near the middle of flucton

radius which is not necessarily the center of flucton. Since the weight function is dependent on total

density, the increase or decrease in the value of total density leads to the corresponding increase or

decrease in the weight function.
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Figure 1. Total density distribution for 42Ti, 48Ti and 54Ti isotopes from NL3 as a

function of nuclear distances. Follow the text for details.

Figure 2. Weight function corresponding to 42Ti and 48Ti isotopes from NL3 as a

function of nuclear distance. Follow the text for details.

The principal aim of this project involved the calculations pertaining to the symmetry energy and
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Relevance of infinite nuclear matter quantities in finite nuclei

its volume and surface components. Symmetry energy being a quantity of infinite nuclear matter,

cannot be measured directly. However, it is possible to measure it using other observables which

share some indirect relationship with it. The isospin asymmetry is the difference in the densities

of neutrons and protons. The symmetry energy, which is defined as the energy density derivative

with respect to isospin asymmetry, plays a significant role in a range of nuclear physics branches

involving the study of ground-state nuclear structure [36-38], heavy-ion reaction dynamics [39,40]

and study related to neutron stars [2, 41-43].

Using the value of symmetry energy, we compute the value of its components, namely surface

and volume symmetry energy, which are usually calculated at saturation based on the properties

of nuclear matter. Based on the method of Brueckner’s energy density functional [29,30], some

non-physical (negative values) of nuclear symmetry energy were observed. Therefore, this method

requires assigning a proper limit to the integration for the calculation of symmetry energy and its

related parameter based on the change in sign from negative to positive value detailed in Section 2.2.

We have provided a detailed flowchart as a means of simplifying the whole process of program-

ming for calculating the symmetry energy and its related parameters in Section 3. Moreover, Fig.

2 shows the calculated weight function as a function of nuclear distance for two Titanium isotopes

namely 42Ti and 48Ti nuclei. The points xmin and xmax signify the integration limits for each of

the nuclei taken while calculating the value of symmetry energy. Using Titanium isotopic chain

and following Eq. 17, 20, 21, and 23, we have calculated the symmetry energy, volume symmetry

energy, surface symmetry energy and their ratio κ, respectively, for the NL3 parameter set within

the RMF formalism. The values corresponding to these parameters are given in Table 1. The present

calculation can be extended to more isotopic chains, including light, heavy and super-heavy regions.

The symmetry energy co-efficient, namely, neutron pressure and curvature, can also be incorpo-

rated based upon the model of CDFM. These nuclear matter quantities can be treated as primary

observable for shell/sub-shell closure (s) at and/or near the drip-line region of the nuclear chart.

Table 1. The calculated symmetry energy (S), volume symmetry energy (SV ), surface

symmetry energy (SS) and their ratio κ for Titanium isotopic chain from non-linear

NL3 parameter set is shown in the table

Nucleus Symmetry energy Volume symmetry energy Surface symmetry energy κ
42Ti 26.54807791 31.80804655 21.90635807 1.452000668
44Ti 26.89762324 32.16993464 22.26152446 1.44509127
46Ti 27.2649504 32.56214504 22.66766852 1.43650173
48Ti 27.60654222 32.88987599 22.87557569 1.437772602
50Ti 27.87674081 33.17500314 23.22874705 1.428187369
52Ti 27.81287292 32.99695584 22.95625787 1.437383916
54Ti 27.75016038 32.85276579 22.83300272 1.438828094
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From the Table 1 at 50Ti, which corresponds to N = 28, one can observe a significant increase

in the symmetry energy along with its surface and volume components while showing a decrement

in κ value, which altogether indicates higher stability of isotopes and a possible shell closure. This

will open the path for a better understanding of the properties across the nuclear landscape. A few

investigations in the direction of isospin dependent effective nuclear surface quantities for possible

signature of magicity or shell/subshell closure are already established in Ref. [3] and references

therein.
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