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Abstract. Conversion electron spectroscopy is a viable tool when studying the nuclear phenomenon, shape
coexistence. When a neutron-rich nucleus beta decays, a neutron transforms into a proton and emits an electron
(β). The excited nucleus can then interact electromagnetically with the surrounding orbital electrons. This
can result in the ejection of an electron (e−) from the atom, a process called internal conversion. Because this
process is essentially simultaneous in time, it is pivotal to differentiate between the electron (β) emitted from
the nucleus and the internal conversion electron (e−) emitted from the atom. Here we apply supervised machine
learning algorithms to distinguish between one and two electron events, as well as determine the origin of the
electron. We used two different convolutional neural network (CNN) architectures to accomplish these tasks.
With simulated data, we were able to successfully train a CNN to distinguish between a one and two electron
event with 96.79% accuracy. Furthermore, we successfully trained a CNN to predict the origin of the electron
for one electron events. Our results show promise that our models’ performance will generalize to experimental
data. Once our models are complete, machine learning will be an important data analysis tool for conversion
electron spectroscopy.
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1. INTRODUCTION

The classical picture of spherical nuclei is far from the reality of the true nuclear structure. Shape
coexistence is a nuclear phenomenon, where the nucleus exists in two stable shapes at the same exci-
tation energy [1]. Nuclear properties, such as shape coexistence, are expected to vary significantly as
a function of proton and neutron number (Z,N). Their properties provide unique information on the
impetuses that foster changes to the nuclear structure of rare isotopes. In some neutron-rich nuclei,
0+ states are predicted to exhibit shape coexistence (see Fig. 1). Therefore they are compelling to
study, but experimentally challenging. At low energies, where the only energetically allowed decay
mode is 0+ → 0+, conversion electron spectroscopy is the only viable technique to probe their
properties. These shape-coexisting states are paramount in understanding changes to the nuclear
structure of exotic nuclei (see below for further discussion) [2].
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Radioactive nuclei are produced and isolated at the National Superconducting Cyclotron Lab-
oratory (NSCL) at Michigan State University. Sean Liddick’s group focuses on characterizing tran-
sition rates of ground and excited states in nuclei as a function of proton and neutron number. The
decay transition rates of the excited states can provide quintessential information of the coexisting
structures. Sean Liddick’s group employs conversion electron spectroscopy to study these transition
rates. When a neutron-rich nucleus beta decays, a neutron transforms into a proton and emits an
electron (β). The excited nucleus can then interact electromagnetically with the surrounding orbital
electrons. This can result in the ejection of an internal conversion electron (e−) from the atom [3].
Because this process is essentially simultaneous in time, it is pivotal to differentiate between the
electron (β) emitted from the nucleus and the internal conversion electron (e−) emitted from the
atom.

Machine learning may offer a means to a solution for this problem. A sub-field of artificial
intelligence, machine learning is becoming ubiquitous in all fields of science. Due to the current
information revolution, there has been an exponential increase in computational power. With this
ability to effectively and efficiently apply new techniques to large datasets, machine learning has
been blossoming [4]. Many researchers are finding it advantageous to employ these techniques to
their own data analysis. Sean Liddick’s group records a substantial amount of data making their
experiment a potential candidate for machine learning techniques. In this paper, we attempt to use
supervised machine learning techniques as a means to distinguish between one (e−) and two (β,
e−) electron events and predict the electron’s initial positions based on the energy depositions in a
scintillator.

Figure 1. Shape coexistence is a nuclear phenomenon can have nuclei exist in variety
of shapes at similar energies. An example of this is 186Pb [5].
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2. ELECTRON EVENTS

In this experiment, a scintillator with dimensions 4.8 cm × 4.8 cm × 0.3 cm is divided into a 16 ×
16 grid, with a total of 256 grid sites. Each grid site or pixel on the detector is 3 mm × 3 mm. For a
given event, the energy deposited in each pixel is recorded.

The data sets that we are using to implement our machine learning techniques were simulated
by Sean Liddick. The simulation consists of a detector that is a single crystal of CeBr3. Two
different data sets were created. For the first simulated data set, the source was a single 3.06 MeV
electron emitted isotropically with a starting position distributed uniformly throughout a rectangular
volume of size 3 cm × 3 cm × 0.3 cm centered on the detector itself. For the second data set,
the source was two 3.06 MeV electrons emitted independently in the same isotropic manner as the
single electron case. Note that this simulation does not consider the simultaneous emission of these
two electrons. During the electron scattering process, it is possible for the electron(s) to deposit
energy in multiple locations, however these locations will always be contiguous. It is important to
note that the simulation contains no light emission and no energy resolution. Figure 2 is a visual
representation of the two different types of electron events.

Figure 2. Top: One electron events. Bottom: Two electron events. Red dots indicate
the starting position(s) of the electron(s).

The goal is to implement machine learning techniques to distinguish between a one electron
event, where there is a single contiguous interaction site and a two electron event, where there can
be multiple contiguous interaction sites or a larger contiguous interaction site compared to the single
electron case. In addition, we will identify the initial position (x0, y0) of the electron(s) for an event.
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3. CONVULATIONAL NEURAL NETWORK

We chose to use convolutional neural networks as a means to perform our desired tasks. Convolu-
tional neural networks (CNN) are a class of deep neural networks optimized for analyzing images.
CNNs provide the computer with the ability to see. This will allow us to treat each scintillator event
as a visual image, so the computer can see the electron’s interaction sites on the scintillator. For a
detailed explanation on convoluational neural networks and other machine learning techniques, see
[4]. The source code for these two CNNs are located at this link.

3.1 Single-Electron Model

We created a CNN architecture in Keras1 to predict the origin of the electron in single-electron
events. We first created two mutually exclusive sets from the single-electron data set. Our training
set consisted of 333,333 events and our testing set consisted of 20,000 events. Our CNN architecture
consisted of one two-dimensional convolutional layer, where the output from this layer was then
flattened into a one dimensional array and connected to a feed forward neural network layer with
512 nodes. This layer was connected to the output layer with two nodes, which are representative of
the x and y positions of the electron. We used the following loss function

MSE =
1

N

N−1∑
i=0

(ŷi − yi)2. (1)

Figure 3 shows the model’s performance throughout the duration of the training. After training
the model for ten epochs, we achieved a model accuracy of 96%.

Figure 3. Single-Electron Model was trained for ten epochs. Left: Model’s accuracy
after each epoch. Right: Model’s loss after each epoch.

1https://keras.io
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3.2 Multi-Electron Model

The second CNN architecture was designed to correctly categorize a one and two-electron event.
Firstly, we created a new data set that contained both one and two-electron events. This was done
by randomly selecting events from each data set until our new data set had size 200,000. We then
trained the CNN on 150,000 events and tested on the remaining 50,000 events.

Our CNN architecture consisted of two two-dimensional convolutional layers that were then
connected to a two-dimensional max pooling layer. This was then connected to a single neural
network layer with 128 nodes. Finally, this was connected to the output layer, which was another
neural network layer with two nodes, where one node represents the probability of the event being
a one-electron event and the other represents the probability of a two-electron event. We used the
categorical cross entropy loss function for training our model. This loss function has the form

H(y) = −
∑
i

yi log(ŷi), (2)

where ŷi is the predicted probability of the event being class i and yi is the true probability of the
event bein class i.

4. RESULTS

4.1 Single Electron Model

The Single-Electron Model was designed to predict the origins of the electron in one-electron events.
After training, our model was 96% accurate on the testing set. When evaluating the distances be-
tween the predicted value (x̂, ŷ) and the actual value (x0, y0), we found that on average our model
predicted points about 1.2 mm away from the actual origin. This is promising considering the width
of a pixel totals in 3 mm, so the majority of the time we are predicting points that are within the same
pixel. However, to further benchmark the performance of our model, we compared it with a random
guessing algorithm. Using the assumption that the electron starts in the pixel with the highest en-
ergy (which is correct 70% of the time), the algorithm was written to randomly pick a point within
that pixel. Figure 4 shows a comparison of the CNN predictions to the random guessing algorithm
predictions. The histogram plots show the distance between the predicted (x̂, ŷ) and the actual (x,
y) on the x-axis and then the frequency of these distances on the y-axis.
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Figure 4. On the left are two plots representing the Single-Electron Model’s predictive
error versus the error of the random guessing algorithm. On the right limits the x-axis
to [0,3].

On average, the random guessing algorithm predicted points that were 1.5 mm away from the
actual point. Our model’s error was less than the random guessing algorithm’s on average 77% of
the time. This means our model’s performance is better the majority of the time than randomly
guessing. However, our neural network’s prediction is still only marginally better than the random
guess. Therefore, it is necessary to define a proper uncertainty quantification and resolution scale
so that a true benchmark for our neural network’s performance can be conducted. Table 1 contains
more metrics from the Single-Electron Model’s performance and the random guessing algorithm’s
performance. The table includes the average distance between the actual origin and the predicted
origin of the electron, the closest prediction to the actual origin of electron, the furthest prediction
from the actual origin of electron, and the 90th, 95th, 99th percentiles. The percentiles show that
90%, 95%, and 99% of our predictions were 1.9 mm, 2.165 mm, and 3.293 mm from the actual
origin of the electrons, respectively.

Table 1. Metrics for Single-Electron Model and Random Guessing Algorithm (mm)

Method Average Min Max 90 % 95 % 99 %

Single Electron Model 1.2117 0.011 21.253 1.900 2.165 3.293

Random Guessing 1.555 0.008 3.944 2.574 2.805 3.218

4.2 Multi-Electron Model

The Multi-Electron Model was designed to distinguish between a one-electron and two-electron
event given only the scintillator with the amount of energy deposited in each pixel. After training,
our model achieved a 96.79% accuracy (see Figure 5). This means the model was able to suc-
cessfully distinguish the difference between the simulated one and two-electron events. This result
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shows promise of our CNN model’s generalizability to real experimental data.

Figure 5. The Multi-Electron model was trained for ten epochs. Left: Model’s accu-
racy of the model after each epoch. Right: Model’s loss of the model after each epoch.

5. CONCLUSION

With the implementation of machine learning techniques, we were able to successfully train a CNN
to distinguish between a one and two-electron event. Furthermore, we successfully trained a CNN
to predict the origin of the electron for one-electron events. Relative to the size of a pixel, our
model’s mean error was marginally better than that of the random guessing algorithm’s, therefore
a proper uncertainty quantification needs to be explored. This technique will be generalized to
predict the origins of the electrons in the two-electron case and their respective initial energies.
These models were trained and tested on simulated data provided by Sean Liddick, so they will need
to be tested with a data set with light emission and an energy resolution. Once these models are
completely generalized, they can then be applied to real experimental data. If they perform well on
the experimental data, then machine learning will be a viable data analysis technique for the Sean
Liddick group and conversion electron spectroscopy in general.
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