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Abstract. We apply the real space Renormalisation Group (RNG) technique to a variety of one-dimensional
Ising chains. We begin by recapitulating the work of Nauenberg for an ordered Ising chain, namely the dec-
imation approach. We extend this work to certain non-trivial situation namely, the Alternate Ising Chain and
Fibonacci Ising chain. Our approach is pedagogical and accessible to undergraduate students who have had a
first course in statistical mechanics.
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1. INTRODUCTION

There is a deep and useful connection between Statistical Mechanics and Quantum Field Theory.
Kenneth Wilson appreciated this connection and applied the renormalization ideas to statistical
mechanics[1]. Application of these techniques to both classical and quantum many body problems
have seen success. However, RNG calculations are often very complex and the approximations
made are sometimes obscure. Often, one has to resort to extensive numerical calculations.

The present work is written in the spirit of conveying some essential ideas of RNG to a beginner
and applying this approach to more complicated Ising chains. We present some pedagogical exam-
ples of a form of real space RNG termed Decimation. This technique was introduced by Michael
Nauenberg in the context of the one-dimensional Ising model. Unfortunately, this attractive piece
of work [2] is marked by several typographical errors. We present Nauenberg’s work in a simplified
(and hopefully error-free) fashion. We extend it to related Hamiltonians such as the Alternate Ising
model and Fibonacci chain Ising model.

The RNG strategy can be symbolically stated as follows. It transforms the Hamiltonian, e.g.
H
′
= R(H). Next, one iterates it, H

′′
= R(H ′) until one obtains a fixed point Hamiltonian,

H∗ = R(H∗). The flow towards the fixed point Hamiltonian and the Hamiltonian H∗ itself yields
insight into the physical properties of the system. Wilson suggested such a procedure and was able
to elicit the critical properties of the 2D and the 3D Ising model and a famous quantum system
namely, the Kondo problem[3].
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In Sec. 2, we recapitulate the work of Nauenberg and describe how decimation is carried out
for the one-dimensional Ising model. In Sec. 3, we extend this approach to alternate Ising model
where the coupling is alternate like in a binary alloy. In Sec. 4, we discuss the Fibonacci Ising chain.
Sec. 5 constitutes the conclusion.

2. ONE DIMENSIONAL ISING MODEL

We start with the familiar one-dimensional Ising model for N spins, Si = ±1, i = 1, 2...N , with
nearest neighbour coupling constant J, see Fig.(1).
The Hamiltonian HN for this model is written as,

S1 S2
J

S3
J

S4
J

S5
J

Figure 1.: One Dimensional Ising Spin model

HN = − J

kT

N∑
i=1

SiSi+1, where SN+1 = S1 (1)

One can consider the dimensionless Hamiltonian HN , without loss of generality,

HN (K) = −K
N∑
i=1

SiSi+1 (
J

kT
= K) (2)

Note that K > 0 implies ferromagnetism.

2.1 Decimation

Let P be the transfer matrix such that P(i, i+ 1) = exp(KSiSi+1). Thus,

ZN =
∑

s1,s2,s3...

exp(−HN (K)) =
∑

P(S1S2)P(S2S3)P(S3S4)... (3)

P =

[
eK e−K

e−K eK

]
(4)

As the elements of the matrix depend on the product SiSi+1 which is same for all i, we can write

ZN =
∑

s1,s2,s3...

(P(K)
N
) = Tr(P(K)

N
) (5)

Now, instead of computing the usual partition sum as shown above, we consider only the partial sum
of exp[−HN (K)] over all possible values of even spins, Si = ±1, i = 2, 4, .... and for even N we
obtain a scaled partition function exp[−HN (K ′)], (see Fig. (2)).
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Figure 2.: Decimation

The Hamiltonian becomes,∑
[s2s4..sN ]

exp[−HN (K)] = P2
S1S3

P2
S3S5

....P2
SN−1S1

(6)

The idea behind this partial summation is to find a renormalization transformation K→ K
′

such that,

P2(K) = exp[2g(K)]P(K
′
) (7)∑

exp(−HN (K)) = TrP(K)
N

= Tr[P(K)
2
]
N
2 , (8)

where g(K) is a scalar function of K. Then K
′

can be interpreted as an effective Ising coupling
constant for the remaining odd spins Si, i = 1, 3, 5....N − 1 and Eq. (8) may (formally) be written
as.

exp(−HN (K)) = P(K)
N (9)

= [exp(2g(K))P(K′)]N/2 (10)

= exp(Ng(K))[(P(K ′))]N/2 (11)

= exp(Ng(K))exp(−HN
2
(K ′)) (12)

Thus, the resulting equation becomes,∑
[s1s2..sN ]

exp[−HN (K)] =
∑

[s1s3..sN ]

exp[−HN/2(K
′
) +Ng(K)] (13)

To make the procedure clear we discuss the case of 3 spins,

eK
′S1S3 ∗ e2g(K) =

−1∑
S2=+1

eKS1S2 ∗ eKS2S3 (14)

= eK(S1+S3) + e−K(S1+S3) (15)

If S1 = S3 = +1

eK
′
∗ e2g(K) = e2K + e−2K (16)
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If S1 = −S3 = +1

e−K
′
∗ e2g(K) = 2 (17)

Using Eq.(17) we obtain g(K)

g(K) =
1

2
K
′
+

1

2
ln2 (18)

Next using Eq. (16) we obtain K’

K
′
=

1

2
ln{cosh(2K)} (19)

Thus K ′ is defined by a non-linear transformation. We denote this as K ′ = f(K). Near the fixed
point K ′ = K∗ + ε,

K ′ = f(K∗ + ε) (20)

K∗ + ε′ = f(K∗) + εf ′(K∗) (21)

As K∗ = f(K∗) near a fixed point K* we have

ε′ = εf ′(K∗) (22)

which is a linear transformation that resembles

ε′ = λε (23)

where λ = tanh(K∗).

There are two fixed points for the equation K∗ = ln{cosh(2K∗)}/2, 0 and ∞ with λ = 0

and λ = 1 respectively. For phase transition λ must be greater than unity. This proves the well
established result that there is no phase transition for 1D Ising spin model. There is another way to
see this. After applying the renormalization transformation n times, the mapping Kn−1 → K(n)

can be obtained from the recurrence relation,

K(n) =
1

2
ln {cosh(2K(n−1)

)} (24)

where K(0) = K.
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Let ζ = tanh(K) (25)

therefore K ′ =
1

2
ln(

1 + ζ2

1− ζ2
) (26)

Hence, ζ ′ = tanh(K’) = tanh{1
2

ln(
1 + ζ2

1− ζ2
)} (27)

=

exp
(1
2

ln
(1 + ζ2

1− ζ2
))
− exp

(
−
(1
2

ln
(1 + ζ2

1− ζ2
)))

exp
(1
2

ln
(1 + ζ2

1− ζ2
))

+ exp
(
−
(1
2

ln(
1 + ζ2

1− ζ2
))) (28)

=

√
1 + ζ2

1− ζ2
−

√
1− ζ2

1 + ζ2√
1 + ζ2

1− ζ2
+

√
1− ζ2

1 + ζ2

(29)

=
(1 + ζ2)− (1− ζ2)
(1 + ζ2) + (1− ζ2)

(30)

Thus,

ζ ′ = ζ2 (31)

tanh(K’) = tanh(K)2 (32)

Since tanh(K) < 1, tanh(Kn) tends to zero as n −→ ∞. This suggests that the coupling gets
weaker with each decimation and we are left with a non-itneracting system which will show no
phase transition. We next discuss the more complex (unequal Ji) one-dimensional Ising models.

3. ALTERNATE ISING MODEL

Here the K ′is are arrranged in the manner shown in Fig.(3).

S1 S4
K ′1

S7
K ′2

S1 S2
K1

S3
K2

S4
K1

S5
K2

S6
K1

S7
K2

Figure 3.: Similar Decimation for Alternate Ising Model

In order to adopt a similar decimation procedure we need to consider four spins at a time. This is

30 Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018



Real Space Renormalization Group for One-Dimensional Ising Chains

illustrated in Fig.(3). Using this procedure,

eK
′
1S1S4 ∗ eg1 =

∑
S2,S3

eK1S1S2 ∗ eK2S2S3 ∗ eK1S3S4 (33)

=
∑
S3

eK1S3S4 ∗ 2cosh(K1S1 +K2S3) (34)

= eK1S4 ∗ 2cosh(K1S1 +K2) + e−K1S4 ∗ 2cosh(K1S1 −K2) (35)

Like in the previous section, we consider S1 = S4 = +1 to obtain ,

eK
′
1 ∗ eg1 = eK1 ∗ 2cosh(K1 +K2) + e−K1 ∗ 2cosh(K1 −K2) (36)

and S1 = −S4 = +1 to obtain,

e−K
′
1 ∗ eg1 = e−K1 ∗ 2cosh(K1 +K2) + eK1 ∗ 2cosh(K1 −K2) (37)

Using Eqs.(36) and (37), and cosh(x)=cosh(-x) we obtain,

e2K
′
1 =

eK1cosh(K1 +K2) + e−K1cosh(K1 −K2)

eK1cosh(K1 −K2) + e−K1cosh(K1 +K2)
(38)

employing the addition properties of cosh function, we obtain,

tanh(K ′1) = tanh2(K1)tanh(K2) (39)

One similarly obtains,

tanh(K ′2) = tanh2(K2)tanh(K1) (40)

The fixed points are,{K∗1 ,K∗2} = {0, 0} or {∞,∞}.
Note that we need to block spins in a judicious way. If we block them in a non similar fashion,

i.e. if the new lattice is not alternate (see Fig.(4)), then,

S1 S3
K ′1

S5
K ′1

S7
K ′1

S1 S2
K1

S3
K2

S4
K1

S5
K2

S6
K1

S7
K2

Figure 4.: Non similar decimation

tanh(K ′1) = tanh(K1)tanh(K2) (41)

In this case a fixed point discussion is not possible as K ′2 does not exist. However, the free energy is
conserved in either case.
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4. FIBONACCI CHAIN ISING MODEL

In this section we consider a fibonacci series where two b′s are never adjacent i.e. the nearest neigh-
bour of ’b’ is always ’a’ (see Fig.(5)). We suggest a method to generate the decimation procedure
below.

s1
a

s3
b

s4
a a

s6
b

s7
a b

s9
a

s10
a b

s12
a

s1 s3
a′

s4
b′

s6
a′

s7
a′

s9
b′

s10
a′

s12
b′

Figure 5.: Blocking in the Fibonacci Ising model

4.1 Matrix method for generation

It is well know that the Fiboanacci chain can be generated by setting up a number of rules for rabbit
procreation. In the present case we generate it by the mathematical operation shown below.

M =

[
1 1

1 0

]
, N (0) =

[
N (0)A

N (0)B

]
=

[
A

B

]
: AB (42)

MN (0) =

[
1 1

1 0

][
A

B

]
=

[
A+B

A

]
: ABA = N (1) (43)

MN (1) =

[
1 1

1 0

][
A+B

A

]
=

[
A+B +A

A+B

]
=

[
N (2)A

N (2)B

]
= N (2) : ABAAB (44)

MN (2) =

[
1 1

1 0

][
A+B +A

A+B

]
=

[
A+B +A+A+B

A+B +A

]
=

[
N (3)A

N (3)B

]
(45)

= N (3) : ABAABABA

and so on.
For general iteration,

N
(n+1)
A = M11N

(n)
A +M21N

(n)
B M11 =M21 =M12 = 1 (46)

N
(n+1)
B = M12N

(n)
A +M22N

(n)
B M22 = 0 (47)

as n −→ ∞, the ratio r = limn−→∞N
(n)A/N (n)B −→ (

√
5 + 1)/2. Here NA, NB are length

scales of bond A and B respectively.

32 Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018



Real Space Renormalization Group for One-Dimensional Ising Chains

4.2 Decimation method

Consider now the Ising Chain shown in Fig.(6):

S1 S2
JL

S3
JS

S4
JL

S5
JL

S6
JS

S1 S3
J ′L

S4
J ′S

S6
J ′L

Figure 6.: Self-similar blocking for Fibonacci chain

Let Ki = Ji/kT

HN (K) = −
N−1∑
i=1

KiSiSi+1 (48)

eK
′
LS1S3 ∗ eg1 =

−1∑
S2=+1

eKLS1S2 ∗ eKSS2S3 (49)

As in the previous sections, let S1 = S3 = +1 we obtain,

eK
′
L ∗ e2g1 = eKL+KS + e−(KL+KS) (50)

and S1 = −S3 = +1 yields,

e−K
′
L ∗ e2g1 = eKL−KS + e−(KL−KS) (51)

Using Eqs.(50) and (51), and cosh(x) = cosh(−x) leads to,

tanh(K ′L) = tanh(KL)tanh(KS) (52)

and g1 =
1

2
K ′L +

1

2
ln(2cosh(KL −KS)) (53)

For the ordered case (KL = KS) the tansformation reduces to tanh(K ′) = tanh2(K) and g1 is
given by the same expression as Eq.(18). Further, K ′S = KL and g2 = 0. Hence, all the above
equations are consistent with ordered case. The fixed points in this case are,{K∗1 ,K∗2} = {0, 0} or
{∞,∞}.

Self similarity is preserved if the new lengths follow the following relation.

L′

S′
=
L

S
(54)

But L′ = L+ S and S′ = L. Thus,

1 +
S

L
=
L

S
= x (55)

1 +
1

x
= x (56)
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which leads to x = (
√
5 + 1)/2, the golden ratio.

5. CONCLUSION

This decimation approach is perhaps the simplest version of RNG. Its extension to higher dimension
however gets tricky. The solution to this problem uses the Migdal Kadanoff transformation[4],[5].
Interestingly, this decimation procedure inspired similar work in quantum systems. We hope to
describe this quantum version introduced by Bhat, Singh and Subbarao[6] in the future.
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