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Networks of topological string defects with different Non-Abelian
fundamental groups

Ramyak Bilas1 ∗

13rd year BS-MS, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, WB, India,
741246

Abstract. Topological string defects corresponding to a non-Abelian fundamental group have interesting
property of entanglement thus giving rise to the possibility of network formations. We consider some con-
ventional as well as some hypothetical non-Abelian fundamental groups and investigate possibility of different
types of networks in each case. The network structures we discuss are one of these three : Hexagonal, Cubic
and Diamond lattice.
Keywords: Topological defects, Mean-Abelian fundamental group, String crossing, Biaxial nematics.

1. INTRODUCTION

An ordered media is characterised by an order parameter associated at each point of the system.
The collection of all possible values of order parameters gives us an order parameter space. It can
be argued on the grounds of topology that certain arrangements of the order parameter produce
singularities that cannot be removed by local deformations. Such defects that arise entirely due to
topology are called topological defects. These are then categorised into monopole defects, string
defects ,etc. Here our primary interest lies in string defects. As we shall see, in certain cases of
media(non-Abelian) line defects get entangled i.e. when we cross one string defect around other
there remains behind a link joining the two defects at the crossing points. If the topology of the
order parameter space (specifically, the structure of its fundamental group) allows it, we can have
three or more links at a given point on a string defect giving rise to the possibility of network
structures. Almost all the cases that we shall consider here have symmetry groups that have not
been observed apart from the case of biaxial nematics (D2 point group symmetry). Biaxial nematic
ordering is expected to arise in certain liquid crystal systems, though it has never been observed as
a thermotropic liquid crystal phase. For most of the discussion here, we have followed ref. [1]

∗∗ rb16ms027@iiserkol.ac.in
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2. CLASSIFYING STRING DEFECTS

2.1 ORDER PARAMETER SPACE AS COSET SPACE

Every ordered media has associated with it a function that assigns with each point of space a specific
value of an order parameter. Additionally all such order parameter values have associated with
them ’a group of transformation G, such that if f1 and f2 are any two possible values of the order
parameter then there exist a group element g such that f2 = gf1.’ Fixing f , if we define H to be the
set of all g such that gf = f , then H forms a subgroup of G called as the isotropy group of f . It can
be shown that there is an one-one correspondence between elements of order parameter space and
elements of coset space G/H giving us a powerful description of the order parameter space.

2.2 FUNDAMENTAL GROUP

If we consider loops in physical space then we get corresponding loops in the order parameter space
R. If we have a single special value of the order parameter (say x) fixed in those loops then we get
based loops. Homotopy classes of such based loops form a group structure. (For this to hold the
order parameter space must be path connected.) This is called as the fundamental group of R, or the
first order homotopy group π1(R, x).

2.3 CONJUGACY CLASSES

The elements of π1(R, x) each depicts a kind of line defect. These essentially should not be able to
convert to one another by continuous transformation. But as we have imposed the condition that one
point x to be fixed to impose a group structure, we have not exhausted all possibilities of conversion
by smooth deformations. The construct of having a fixed point in the loop is artificial and there
should indeed be no restriction on such loops apart from the fact that the loops in physical space
must surround the defects. For this we invoke a result that links the point based homotopy classes
to the ’free homotopy classes’. A loop f at x is freely homotopic to a loop g at y if there is a
path isomorphism c taking homotopy class [f ] of π1(R, x) into the homotopy class [g] of π1(R, y).’
This actually rearranges elements of π1(R) and the sets within which there is shuffling are the
conjugacy classes. Thus elements of same conjugacy class can be converted to one another by
taking them around another defect, while elements belonging to different conjugacy classes can
never be converted to each other by smooth deformations and hence are genuinely topologically
distinct defects. Thus a given conjugacy class of the fundamental group describes the set of all the
inter-convertible string defects.

2.4 FUNDAMENTAL THEOREM ON FIRST HOMOTOPY GROUP OF COSET SPACE

In general, it is very difficult to directly compute π1(R). But a very important result lets us calculate
it with much more ease:’If G is a connected and simply connected group, H is any subgroup of

2 Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018
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G and H0 is the set of points in H that are connected to the identity by continuous paths lying in
H , then H/H0 is isomorphic to the fundamental group π1(G/H) i.e. π1(G/H) ∼ H/H0.’ Thus
calculating the fundamental group reduces to calculation of H/H0.

3. EXAMPLES OF STANDARD AND HYPOTHETICAL FUNDAMENTAL GROUPS

3.1 ORDINARY SPIN

This order parameter space consisting of 3 dimensional unit vectors is found in variety of systems
with the most widely known being the magnetisation of a ferromagnetic material. Here the group
G can be taken to be SO(3). H then is simply SO(2). Thus we have R = G/H . But SO(3) is
not simply connected debarring us from use of the fundamental theorem. If we take SU(2) then
we have R = SU(2)/U(1) where U(1) is the lift of SO(2) in SU(2).But we have U(1) which is
connected to identity. Thus, π1(SU(2)/U(1)) = 0. Thus there are no topological line defects in
such a medium.

3.2 NEMATIC LIQUID CRYSTALS

In nematic liquid crystalsG can be taken to be SO(3) whileH would then beD∞ as their symmetry
group is same as that of cylinder. If D′∞ is the lift of D∞ in SU(2), it turns out that D′∞ has two
connected components. So, π1(SU(2)/D′∞) = Z2. Thus we have a non trivial defect and the
fundamental group of the order parameter space is Abelian.

3.3 BIAXIAL CRYSTALS

These have a symmetry of rectangular box with point group D2. Thus order parameter space R =

SO(3)/D2. The lift ofD2 in SU(2) is isomorphic to quaternion group,Q = {±1,±iσx,±iσy,±iσz},
where σ′is are Pauli matrices. If the groupH is discrete thenH/H0 = H . Thus we have π1(SU(2)/Q) =

Q. As Q is non-Abelian, biaxial nematics are thus non-Abelian. These split into five conjugacy
classes: {1}, {−1}, {±iσx}, {±iσy}, {±iσz}.

Following two examples of fundamental group have been discussed in ref.[2].

3.4 TRIANGULAR SYMMETRY

If the order parameter has a D3 symmetry group, the order parameter space would then be R =

SO(3)/D3. The lift of D3 in SU(2) is given by D′3 = {±1,±ω,±ω2,±j,±jω,±jω2} where j =
−iσx and ω = − 1

2 −
√
3
2 σz . Just like above we conclude π1(SU(2)/D′3) = D′3. This also turns out

to be non-Abelian and has six conjugacy class: {1}, {−1}, {ω, ω2}, {−ω,−ω2}, {j, jω, jω2}, {−j,−jω,−jω2}.
Thus we have five different kind of non-trivial defects that cannot inter-convert, see ref.[2] for de-
tails.

Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018 3
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(a) (b) (c)

Figure 1.: Finding homotopy class of links formed by entangled strings

3.5 OCTAHEDRAL SYMMETRY

If order parameter has tetrahedral symmetry group, then R = SO(3)/T where T is the chiral tetra-
hedral group. The lift of T in SU(2) splits into seven conjugacy classes:{1}, {−1}, {±α,±β,±αβ}, {γ,-
αγ, βγ,−αβγ}, {−γ, αγ,−βγ, αβγ}, {γ2, αγ2,−βγ2, αβγ2}, {−γ2,−αγ2, βγ2,−αβγ2}, where
α = 1√

3
σx + 1√

6
σy − 1√

2
σz , β = − 1√

3
σx − 1√

6
σy − 1√

2
σz and γ = − 1

2 −
√
3
2 σx, see ref.[2] for

details.

4. ENTANGLEMENT OF LINE DEFECTS

4.1 NON-ABELIAN MEDIA AND ENTANGLEMENT

Let us consider a simple exercise for two line defects that aren’t exactly coplanar. If we try to cross
one string defect α around the other defect β then we arrive at a configuration similar to figure 1(a).
We can pinch the overlapping parts to get a construct like figure 1(b). It may so happen that this
pinched defect may vanish then we simply recover our original configuration. But if it happens to
be non-trivial then we are left with a link between the two line defects and arrive at the so called
’entanglement’ of line defects.

To determine the homotopy class of the link consider a loop around it and deform it to arrive at
a configuration similar to figure 1(c). We conclude that the class of the link is β ◦ α ◦ β−1 ◦ α−1. A
similar exercise (in figure 2) suggests that the upper half of α changes to β ◦αβ−1. The link is trivial
if α ◦ β = β ◦ α i.e. medium is Abelian. Thus we can only have non-trivial links in case of non-
Abelian media. (When we say the medium is Abelian or non-Abelian, we mean that the fundamental
group of the corresponding order parameter space is Abelian or non-abelain respectively.)

4 Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018
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Figure 2.: Finding homotopy class of string after crossing the other string

4.2 PROPERTY OF THE CLASS THE LINKS BELONG TO

If σ is a link i.e. ∃ α and β such that α ◦ β ◦ α−1 ◦ β−1 = σ, then all the elements of the conjugacy
class that σ belongs to are valid links too .To frame the claim mathematically: If σ′ ∈ A where A is
the conjugacy class of σ, then ∃ α′ and β′ such that α′ ◦ β′ ◦ α′−1 ◦ β′−1 = σ′.

The above statement is true because: γ ◦ {α ◦ β ◦ α−1 ◦ β−1} ◦ γ−1 = {γ ◦ α ◦ γ−1} ◦ {γ ◦
β ◦ γ−1} ◦ {γ ◦ α−1 ◦ γ−1} ◦ {γ ◦ β−1 ◦ γ−1} = α′ ◦ β′ ◦ α′−1 ◦ β′−1

Another important observation about the conjugacy classes that such links may belong to is the
fact that the conjugacy class must contain inverses of all of its elements i.e. if α ∈ A =⇒ α−1 ∈ A
where A is the conjugacy class. This is an observation without proof. This seems to be a necessary
condition but not a sufficient one for a conjugacy class to produce links.

5. LINKS POSSIBLE IN VARIOUS NON-ABELIAN MEDIA

If we have a non-Abelian media then we are guaranteed to get atleast one conjugacy class of links
(simply because if no such link exist then it means that the group is Abelian). Thus even in case of
the most trivial non-Abelian media we are guaranteed to get links connecting various line defects.
The following text describes the kind of links as well as when they form in the specific non-Abelian
media. We shall use −→ to mean first string crosses the other.

5.1 Biaxial Nematic Liquid Crystal

From multiplication table of the quaternion group, β ◦α◦β−1 ◦α−1 can only be either 1 or−1. The
non-trivial −1 link forms when ±σi −→ ±σj such that i 6= j and the α (i.e. the one that crosses)
changes sign. Thus we have only one kind of link in biaxial nematic.

Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018 5
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5.2 Triangular Symmetry

Here we have a bit more diversity then previous case as links can be trivial or ω or ω2. We have
ω link if ±ω −→ {j, jω, jω2}, {−j,−jω,−jω2}; {j, jω, jω2}, {−j,−jω,−jω2} −→ ±ω2;
±j −→ ±jω; ±jω −→ ±jω2 or ±jω2 −→ ±j. To get a ω2 link we can cross the follow-
ing: ±ω2 −→ {j, jω, jω2}, {−j,−jω,−jω2}; {j, jω, jω2}, {−j,−jω,−jω2} −→ ±ω; ±j −→
±jω2; ±jω2 −→ ±jω or ±jω −→ ±j. The upper half of the crossing link can be computed by
calculating βαβ−1.

5.3 Octahedral Symmetry

This fundamental group has got a very complicated crossing and varied classes of links. The links
can belong to either {−1} or {±α,±β,±αβ}. The α and β in this case is very complicated. We
can have −1 only when {±α,±β,±αβ} crosses members of itself in certain cases. The other links
form when other conjugacy classes cross among each other where in some cases we get trivial links.
This increases our pool of distinct classes of links to seven. As we shall see it provides a good set to
form 3−dimensional lattice of networks.

6. NETWORKS POSSIBLE IN VARIOUS MEDIA

The previous section gives us a possibility of forming networks of defects. This section gives a
detailed understanding of the types as well as the expected stability of different structures.

6.1 STITCHING PATTERN

The way in which we ’stitch’ the defects affects the overall stability of the network that we construct.
By ’stitching’ we mean the manner and order in which the links are formed and stacked. The way
we do it is analogous to how we weaves a piece of cloth and the whole arrangement of thread holds
its shape and not separate into a mass of independent threads. As we shall see the networks that
we construct ’remembers the way it was stitched and thus maintains its overall structure and this
stability is topological i.e. it’s stability does not depend on the energetics rather is intrinsic to the
medium itself. So it is important to define a proper way of stitching that if constructed for threads
would maintain the structure.

6.2 NON-CROSSING OF LINKS

The links are formed when one string crosses the other. Thus links are independent entity. When
stacked upon each other we get numerous links at a particular node. It is important to note that
the links should be such that they can’t bypass each other and always maintain the order in which
they we stitched. In most cases the above statement is true. But there exist cases where the above

6 Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018
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Figure 3.: Possible untangling of links

statement is false. So while looking at networks of defects it is important that links don’t bypass
each other so that it maintains the structure the way these were put together.

6.3 POSSIBLE LATTICE OF DEFECTS

Keeping in mind the above points and the fact that we should avoid stacking up same classes of
defects consecutively we can have the following basic lattices.

6.3.1 HEXAGONAL LATTICE

Let us consider the simplest of all the non-Abelian fundamental group, biaxial nematic. As we have
only one class of link i.e {−1} possible so it rules out the possibility of more than one branch at a
particular node made by a single string.

As shown in figure 3, there is a possibility of the links separating out if we have two branch
originating from the same string at a node. So it is wise to opt for a safe one branch network. If
’tension’ remains constant then the most stable network is that of a 2-D hexagonal lattice.

It is important to note the stitching pattern as this is an important factor in deciding stability of
the network. The scheme is shown in figure 4.

In figure 4, each branch from a string is sandwiched between two branch of the adjacent string
. So, if we try to separate out a link by joining two−1 links as done previously we shall end up with
a point where we have two distinct class of defects in point based homotopy group joining which
contradicts the very meaning of being distinct class in a point based homotopy group. As we can
see in figure 5, we have a continuity problem for the string that changes from −iσx to +iσx.

As shown in figure 4, the consecutive string defects belong to different conjugacy classes. In
fact our only requirement in this case is to have no two adjacent string defects belonging to same
conjugacy class and the choice can be completely random which still remains topologically stable.
Thus we can have infinite such arrangements.

We can rearrange the stitching in figure 4 to get a 2-D square lattice as in figure 6.

Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018 7
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Figure 4.: Stitching pattern for 2-D hexagonal lattice

Figure 5.: Infeasibility of untangling the links

Figure 6.: 2-D square lattice with biaxial nematic

8 Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018
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Figure 7.: Sliding of links

As the stitching which forms the cubic lattice is topologically stable so is the lattice formed by
sliding links.

However links here can cross each other as in figure 7. Thus we have some kind of mobility in
the stitching we did for biaxial nematic.

This can be overcome and a perfectly non-mobile topologically stable stitching can be obtained
if we use fundamental group of triangular or octahedral symmetry.(Refer figure 8)

Here in figure 8 the string 1 shows a periodic change from j to jω to jω2 while string 2
alternates between ω and ω2. As can be verified, it overcomes the previous problems of link mobility.

The hexagonal crossing can have a variants too.
In pattern 1 (refer figure 9), we have a general way of building hexagonal lattice. We trace a

line in the hexagonal lattice such that if we add up the angle we turn its absolute value should not
exceed 1800. This allows us to stack up the same pattern on top of one another. Pattern 2 uses the
same principle while making use of the 1800 change in direction of defects. In pattern 3 we have
the angle of turns add up to be greater than 1800 so that the next defect covers more space and thus
we have a family of defects of increasing width. As can be noted one string must cross itself for it
to form the lattice but one class commutes with itself so that we have no links along their contact
barring the formation of complete lattice.

6.3.2 CUBIC LATTICE

We directly make use of the largest non-Abelian fundamental group at our disposal to show the
feasibility of cubic lattice. Our requirement for stability of the structure is that neither stitching
should not crumble upon itself nor should the links be mobile as noted earlier. Avoiding those two
points ensures topological stability.

In case of tetrahedral symmetry, we have two different two different conjugacy class of links
as well as seven different classes of them. For the sake of simplicity, we shall make use of only one
conjugacy class i.e. {±α,±β,±αβ}. Thus we have more freedom of stacking up links. We shall

Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018 9
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Figure 8.: 2-D hexagonal lattice formed with fundamental group of triangular symmetry

adopt a similar stitching as in hexagonal lattice(refer figure 10).
Figure 11 shows two layers of such a structure. These two layers sandwich each other and

form the whole of the cubic lattice as shown in Figure 14. Each node has different links. As can
be verified the links can neither be untangled nor crossed across each other. So it’s a topologically
stable structure. We can choose elements of other conjugacy classes too to get a similar structure.

6.3.3 DIAMOND LATTICE

The stitching used in forming cubic lattice can be easily changed to a diamond lattice (refer figure
13). The model shown in figure 13 is made using wires and colour coded using tapes to identify
various classes of string defects. This is similar with what we did with 2-D hexagonal to square
lattice.

6.4 POSSIBILITY OF OTHER NETWORKS

We have only explored the lattices which would have a constant tension throughout. But the number
of lattice possible is theoretically infinite, depending on differences in tensions of different strings.
But the fact that we have to trace out lines apart from the links to completely make that structure
should be kept in mind. Apart from standard lattice we can do a bit more with the fundamental group
of the tetrahedral symmetry. If we choose our strings to be γ and αβγ2 then we can build bilayers
using the stitching as used in cubic lattice because these change into −αβγ and αγ2 respectively
(refer figure 14). Then we can stitch in an inverted way below also to get a topologically stable
structure. We can take various other elements to get the required result as in other cases.

10 Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018
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(a) Pattern 1 (b) Pattern 2

(c) Pattern 3

Figure 9.: Variants of 2-D hexagonal lattice

Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018 11
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Figure 10.: Stitching patten for cubic lattice
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(a) Layer 1

(b) Layer 2

Figure 11.: Layers of a cubic lattice

Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018 13
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Figure 12.: Layers of a cubic lattice

14 Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018



Networks of topological string defects with different Non-Abelian fundamental groups

Figure 13.: Diamond lattice

Student Journal of Physics,Vol. 7, No. 1, Jan-Mar. 2018 15
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Figure 14.: Block diagram for bilayer

If we have fundamental groups of higher order symmetry then we can build more complicated
nodes. Here in the example we used for cubic and diamond lattice have only two layers that repeat
and each layer has only two different kinds of sting. We can in fact use more number of strings of
different classes and in turn get periodicity of varying order.

7. CONCLUSION

To conclude, we have demonstrated topological stability of network structures formed from string
defects in an non-Abelian medium. The diversity of classes in the fundamental group largely affects
the variety of networks possible. As has been noted above, ensuring the stability of the stitching
pattern used to construct a network ensures the network’s stability. An ordered media such as liquid
crystal or ferromagnetic materials are largely affected by the presence or absence of defects in them.
In case of biaxial nematic liquid crystals or other symmetry groups (if discovered) could allow for
more control over the distribution of defects by formation of networks of them affecting the material
properties. Thus in those cases such networks might play an crucial role in material science.
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Abstract. Conversion electron spectroscopy is a viable tool when studying the nuclear phenomenon, shape
coexistence. When a neutron-rich nucleus beta decays, a neutron transforms into a proton and emits an electron
(β). The excited nucleus can then interact electromagnetically with the surrounding orbital electrons. This
can result in the ejection of an electron (e−) from the atom, a process called internal conversion. Because this
process is essentially simultaneous in time, it is pivotal to differentiate between the electron (β) emitted from
the nucleus and the internal conversion electron (e−) emitted from the atom. Here we apply supervised machine
learning algorithms to distinguish between one and two electron events, as well as determine the origin of the
electron. We used two different convolutional neural network (CNN) architectures to accomplish these tasks.
With simulated data, we were able to successfully train a CNN to distinguish between a one and two electron
event with 96.79% accuracy. Furthermore, we successfully trained a CNN to predict the origin of the electron
for one electron events. Our results show promise that our models’ performance will generalize to experimental
data. Once our models are complete, machine learning will be an important data analysis tool for conversion
electron spectroscopy.
Keywords: Nuclear shape coexistance, Machine learning, Neural networks.

1. INTRODUCTION

The classical picture of spherical nuclei is far from the reality of the true nuclear structure. Shape
coexistence is a nuclear phenomenon, where the nucleus exists in two stable shapes at the same exci-
tation energy [1]. Nuclear properties, such as shape coexistence, are expected to vary significantly as
a function of proton and neutron number (Z,N). Their properties provide unique information on the
impetuses that foster changes to the nuclear structure of rare isotopes. In some neutron-rich nuclei,
0+ states are predicted to exhibit shape coexistence (see Fig. 1). Therefore they are compelling to
study, but experimentally challenging. At low energies, where the only energetically allowed decay
mode is 0+ → 0+, conversion electron spectroscopy is the only viable technique to probe their
properties. These shape-coexisting states are paramount in understanding changes to the nuclear
structure of exotic nuclei (see below for further discussion) [2].

∗hlabollita0219@lions.piedmont.edu
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Radioactive nuclei are produced and isolated at the National Superconducting Cyclotron Lab-
oratory (NSCL) at Michigan State University. Sean Liddick’s group focuses on characterizing tran-
sition rates of ground and excited states in nuclei as a function of proton and neutron number. The
decay transition rates of the excited states can provide quintessential information of the coexisting
structures. Sean Liddick’s group employs conversion electron spectroscopy to study these transition
rates. When a neutron-rich nucleus beta decays, a neutron transforms into a proton and emits an
electron (β). The excited nucleus can then interact electromagnetically with the surrounding orbital
electrons. This can result in the ejection of an internal conversion electron (e−) from the atom [3].
Because this process is essentially simultaneous in time, it is pivotal to differentiate between the
electron (β) emitted from the nucleus and the internal conversion electron (e−) emitted from the
atom.

Machine learning may offer a means to a solution for this problem. A sub-field of artificial
intelligence, machine learning is becoming ubiquitous in all fields of science. Due to the current
information revolution, there has been an exponential increase in computational power. With this
ability to effectively and efficiently apply new techniques to large datasets, machine learning has
been blossoming [4]. Many researchers are finding it advantageous to employ these techniques to
their own data analysis. Sean Liddick’s group records a substantial amount of data making their
experiment a potential candidate for machine learning techniques. In this paper, we attempt to use
supervised machine learning techniques as a means to distinguish between one (e−) and two (β,
e−) electron events and predict the electron’s initial positions based on the energy depositions in a
scintillator.

Figure 1. Shape coexistence is a nuclear phenomenon can have nuclei exist in variety
of shapes at similar energies. An example of this is 186Pb [5].
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2. ELECTRON EVENTS

In this experiment, a scintillator with dimensions 4.8 cm × 4.8 cm × 0.3 cm is divided into a 16 ×
16 grid, with a total of 256 grid sites. Each grid site or pixel on the detector is 3 mm × 3 mm. For a
given event, the energy deposited in each pixel is recorded.

The data sets that we are using to implement our machine learning techniques were simulated
by Sean Liddick. The simulation consists of a detector that is a single crystal of CeBr3. Two
different data sets were created. For the first simulated data set, the source was a single 3.06 MeV
electron emitted isotropically with a starting position distributed uniformly throughout a rectangular
volume of size 3 cm × 3 cm × 0.3 cm centered on the detector itself. For the second data set,
the source was two 3.06 MeV electrons emitted independently in the same isotropic manner as the
single electron case. Note that this simulation does not consider the simultaneous emission of these
two electrons. During the electron scattering process, it is possible for the electron(s) to deposit
energy in multiple locations, however these locations will always be contiguous. It is important to
note that the simulation contains no light emission and no energy resolution. Figure 2 is a visual
representation of the two different types of electron events.

Figure 2. Top: One electron events. Bottom: Two electron events. Red dots indicate
the starting position(s) of the electron(s).

The goal is to implement machine learning techniques to distinguish between a one electron
event, where there is a single contiguous interaction site and a two electron event, where there can
be multiple contiguous interaction sites or a larger contiguous interaction site compared to the single
electron case. In addition, we will identify the initial position (x0, y0) of the electron(s) for an event.
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3. CONVULATIONAL NEURAL NETWORK

We chose to use convolutional neural networks as a means to perform our desired tasks. Convolu-
tional neural networks (CNN) are a class of deep neural networks optimized for analyzing images.
CNNs provide the computer with the ability to see. This will allow us to treat each scintillator event
as a visual image, so the computer can see the electron’s interaction sites on the scintillator. For a
detailed explanation on convoluational neural networks and other machine learning techniques, see
[4]. The source code for these two CNNs are located at this link.

3.1 Single-Electron Model

We created a CNN architecture in Keras1 to predict the origin of the electron in single-electron
events. We first created two mutually exclusive sets from the single-electron data set. Our training
set consisted of 333,333 events and our testing set consisted of 20,000 events. Our CNN architecture
consisted of one two-dimensional convolutional layer, where the output from this layer was then
flattened into a one dimensional array and connected to a feed forward neural network layer with
512 nodes. This layer was connected to the output layer with two nodes, which are representative of
the x and y positions of the electron. We used the following loss function

MSE =
1

N

N−1∑
i=0

(ŷi − yi)2. (1)

Figure 3 shows the model’s performance throughout the duration of the training. After training
the model for ten epochs, we achieved a model accuracy of 96%.

Figure 3. Single-Electron Model was trained for ten epochs. Left: Model’s accuracy
after each epoch. Right: Model’s loss after each epoch.

1https://keras.io
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3.2 Multi-Electron Model

The second CNN architecture was designed to correctly categorize a one and two-electron event.
Firstly, we created a new data set that contained both one and two-electron events. This was done
by randomly selecting events from each data set until our new data set had size 200,000. We then
trained the CNN on 150,000 events and tested on the remaining 50,000 events.

Our CNN architecture consisted of two two-dimensional convolutional layers that were then
connected to a two-dimensional max pooling layer. This was then connected to a single neural
network layer with 128 nodes. Finally, this was connected to the output layer, which was another
neural network layer with two nodes, where one node represents the probability of the event being
a one-electron event and the other represents the probability of a two-electron event. We used the
categorical cross entropy loss function for training our model. This loss function has the form

H(y) = −
∑
i

yi log(ŷi), (2)

where ŷi is the predicted probability of the event being class i and yi is the true probability of the
event bein class i.

4. RESULTS

4.1 Single Electron Model

The Single-Electron Model was designed to predict the origins of the electron in one-electron events.
After training, our model was 96% accurate on the testing set. When evaluating the distances be-
tween the predicted value (x̂, ŷ) and the actual value (x0, y0), we found that on average our model
predicted points about 1.2 mm away from the actual origin. This is promising considering the width
of a pixel totals in 3 mm, so the majority of the time we are predicting points that are within the same
pixel. However, to further benchmark the performance of our model, we compared it with a random
guessing algorithm. Using the assumption that the electron starts in the pixel with the highest en-
ergy (which is correct 70% of the time), the algorithm was written to randomly pick a point within
that pixel. Figure 4 shows a comparison of the CNN predictions to the random guessing algorithm
predictions. The histogram plots show the distance between the predicted (x̂, ŷ) and the actual (x,
y) on the x-axis and then the frequency of these distances on the y-axis.
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Figure 4. On the left are two plots representing the Single-Electron Model’s predictive
error versus the error of the random guessing algorithm. On the right limits the x-axis
to [0,3].

On average, the random guessing algorithm predicted points that were 1.5 mm away from the
actual point. Our model’s error was less than the random guessing algorithm’s on average 77% of
the time. This means our model’s performance is better the majority of the time than randomly
guessing. However, our neural network’s prediction is still only marginally better than the random
guess. Therefore, it is necessary to define a proper uncertainty quantification and resolution scale
so that a true benchmark for our neural network’s performance can be conducted. Table 1 contains
more metrics from the Single-Electron Model’s performance and the random guessing algorithm’s
performance. The table includes the average distance between the actual origin and the predicted
origin of the electron, the closest prediction to the actual origin of electron, the furthest prediction
from the actual origin of electron, and the 90th, 95th, 99th percentiles. The percentiles show that
90%, 95%, and 99% of our predictions were 1.9 mm, 2.165 mm, and 3.293 mm from the actual
origin of the electrons, respectively.

Table 1. Metrics for Single-Electron Model and Random Guessing Algorithm (mm)

Method Average Min Max 90 % 95 % 99 %

Single Electron Model 1.2117 0.011 21.253 1.900 2.165 3.293

Random Guessing 1.555 0.008 3.944 2.574 2.805 3.218

4.2 Multi-Electron Model

The Multi-Electron Model was designed to distinguish between a one-electron and two-electron
event given only the scintillator with the amount of energy deposited in each pixel. After training,
our model achieved a 96.79% accuracy (see Figure 5). This means the model was able to suc-
cessfully distinguish the difference between the simulated one and two-electron events. This result
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shows promise of our CNN model’s generalizability to real experimental data.

Figure 5. The Multi-Electron model was trained for ten epochs. Left: Model’s accu-
racy of the model after each epoch. Right: Model’s loss of the model after each epoch.

5. CONCLUSION

With the implementation of machine learning techniques, we were able to successfully train a CNN
to distinguish between a one and two-electron event. Furthermore, we successfully trained a CNN
to predict the origin of the electron for one-electron events. Relative to the size of a pixel, our
model’s mean error was marginally better than that of the random guessing algorithm’s, therefore
a proper uncertainty quantification needs to be explored. This technique will be generalized to
predict the origins of the electrons in the two-electron case and their respective initial energies.
These models were trained and tested on simulated data provided by Sean Liddick, so they will need
to be tested with a data set with light emission and an energy resolution. Once these models are
completely generalized, they can then be applied to real experimental data. If they perform well on
the experimental data, then machine learning will be a viable data analysis technique for the Sean
Liddick group and conversion electron spectroscopy in general.
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Abstract. We apply the real space Renormalisation Group (RNG) technique to a variety of one-dimensional
Ising chains. We begin by recapitulating the work of Nauenberg for an ordered Ising chain, namely the dec-
imation approach. We extend this work to certain non-trivial situation namely, the Alternate Ising Chain and
Fibonacci Ising chain. Our approach is pedagogical and accessible to undergraduate students who have had a
first course in statistical mechanics.
Keywords: Renormalisation group, Ising chains.

1. INTRODUCTION

There is a deep and useful connection between Statistical Mechanics and Quantum Field Theory.
Kenneth Wilson appreciated this connection and applied the renormalization ideas to statistical
mechanics[1]. Application of these techniques to both classical and quantum many body problems
have seen success. However, RNG calculations are often very complex and the approximations
made are sometimes obscure. Often, one has to resort to extensive numerical calculations.

The present work is written in the spirit of conveying some essential ideas of RNG to a beginner
and applying this approach to more complicated Ising chains. We present some pedagogical exam-
ples of a form of real space RNG termed Decimation. This technique was introduced by Michael
Nauenberg in the context of the one-dimensional Ising model. Unfortunately, this attractive piece
of work [2] is marked by several typographical errors. We present Nauenberg’s work in a simplified
(and hopefully error-free) fashion. We extend it to related Hamiltonians such as the Alternate Ising
model and Fibonacci chain Ising model.

The RNG strategy can be symbolically stated as follows. It transforms the Hamiltonian, e.g.
H
′
= R(H). Next, one iterates it, H

′′
= R(H ′) until one obtains a fixed point Hamiltonian,

H∗ = R(H∗). The flow towards the fixed point Hamiltonian and the Hamiltonian H∗ itself yields
insight into the physical properties of the system. Wilson suggested such a procedure and was able
to elicit the critical properties of the 2D and the 3D Ising model and a famous quantum system
namely, the Kondo problem[3].

∗∗physics.sutra@gmail.com
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In Sec. 2, we recapitulate the work of Nauenberg and describe how decimation is carried out
for the one-dimensional Ising model. In Sec. 3, we extend this approach to alternate Ising model
where the coupling is alternate like in a binary alloy. In Sec. 4, we discuss the Fibonacci Ising chain.
Sec. 5 constitutes the conclusion.

2. ONE DIMENSIONAL ISING MODEL

We start with the familiar one-dimensional Ising model for N spins, Si = ±1, i = 1, 2...N , with
nearest neighbour coupling constant J, see Fig.(1).
The Hamiltonian HN for this model is written as,

S1 S2
J

S3
J

S4
J

S5
J

Figure 1.: One Dimensional Ising Spin model

HN = − J

kT

N∑
i=1

SiSi+1, where SN+1 = S1 (1)

One can consider the dimensionless Hamiltonian HN , without loss of generality,

HN (K) = −K
N∑
i=1

SiSi+1 (
J

kT
= K) (2)

Note that K > 0 implies ferromagnetism.

2.1 Decimation

Let P be the transfer matrix such that P(i, i+ 1) = exp(KSiSi+1). Thus,

ZN =
∑

s1,s2,s3...

exp(−HN (K)) =
∑

P(S1S2)P(S2S3)P(S3S4)... (3)

P =

[
eK e−K

e−K eK

]
(4)

As the elements of the matrix depend on the product SiSi+1 which is same for all i, we can write

ZN =
∑

s1,s2,s3...

(P(K)
N
) = Tr(P(K)

N
) (5)

Now, instead of computing the usual partition sum as shown above, we consider only the partial sum
of exp[−HN (K)] over all possible values of even spins, Si = ±1, i = 2, 4, .... and for even N we
obtain a scaled partition function exp[−HN (K ′)], (see Fig. (2)).
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S1 S2
K

S3
K

S4
K

S5
K

S1 S3
K ′

S5
K ′

Figure 2.: Decimation

The Hamiltonian becomes,∑
[s2s4..sN ]

exp[−HN (K)] = P2
S1S3

P2
S3S5

....P2
SN−1S1

(6)

The idea behind this partial summation is to find a renormalization transformation K→ K
′

such that,

P2(K) = exp[2g(K)]P(K
′
) (7)∑

exp(−HN (K)) = TrP(K)
N

= Tr[P(K)
2
]
N
2 , (8)

where g(K) is a scalar function of K. Then K
′

can be interpreted as an effective Ising coupling
constant for the remaining odd spins Si, i = 1, 3, 5....N − 1 and Eq. (8) may (formally) be written
as.

exp(−HN (K)) = P(K)
N (9)

= [exp(2g(K))P(K′)]N/2 (10)

= exp(Ng(K))[(P(K ′))]N/2 (11)

= exp(Ng(K))exp(−HN
2
(K ′)) (12)

Thus, the resulting equation becomes,∑
[s1s2..sN ]

exp[−HN (K)] =
∑

[s1s3..sN ]

exp[−HN/2(K
′
) +Ng(K)] (13)

To make the procedure clear we discuss the case of 3 spins,

eK
′S1S3 ∗ e2g(K) =

−1∑
S2=+1

eKS1S2 ∗ eKS2S3 (14)

= eK(S1+S3) + e−K(S1+S3) (15)

If S1 = S3 = +1

eK
′
∗ e2g(K) = e2K + e−2K (16)
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If S1 = −S3 = +1

e−K
′
∗ e2g(K) = 2 (17)

Using Eq.(17) we obtain g(K)

g(K) =
1

2
K
′
+

1

2
ln2 (18)

Next using Eq. (16) we obtain K’

K
′
=

1

2
ln{cosh(2K)} (19)

Thus K ′ is defined by a non-linear transformation. We denote this as K ′ = f(K). Near the fixed
point K ′ = K∗ + ε,

K ′ = f(K∗ + ε) (20)

K∗ + ε′ = f(K∗) + εf ′(K∗) (21)

As K∗ = f(K∗) near a fixed point K* we have

ε′ = εf ′(K∗) (22)

which is a linear transformation that resembles

ε′ = λε (23)

where λ = tanh(K∗).

There are two fixed points for the equation K∗ = ln{cosh(2K∗)}/2, 0 and ∞ with λ = 0

and λ = 1 respectively. For phase transition λ must be greater than unity. This proves the well
established result that there is no phase transition for 1D Ising spin model. There is another way to
see this. After applying the renormalization transformation n times, the mapping Kn−1 → K(n)

can be obtained from the recurrence relation,

K(n) =
1

2
ln {cosh(2K(n−1)

)} (24)

where K(0) = K.
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Let ζ = tanh(K) (25)

therefore K ′ =
1

2
ln(

1 + ζ2

1− ζ2
) (26)

Hence, ζ ′ = tanh(K’) = tanh{1
2

ln(
1 + ζ2

1− ζ2
)} (27)

=

exp
(1
2

ln
(1 + ζ2

1− ζ2
))
− exp

(
−
(1
2

ln
(1 + ζ2

1− ζ2
)))

exp
(1
2

ln
(1 + ζ2

1− ζ2
))

+ exp
(
−
(1
2

ln(
1 + ζ2

1− ζ2
))) (28)

=

√
1 + ζ2

1− ζ2
−

√
1− ζ2

1 + ζ2√
1 + ζ2

1− ζ2
+

√
1− ζ2

1 + ζ2

(29)

=
(1 + ζ2)− (1− ζ2)
(1 + ζ2) + (1− ζ2)

(30)

Thus,

ζ ′ = ζ2 (31)

tanh(K’) = tanh(K)2 (32)

Since tanh(K) < 1, tanh(Kn) tends to zero as n −→ ∞. This suggests that the coupling gets
weaker with each decimation and we are left with a non-itneracting system which will show no
phase transition. We next discuss the more complex (unequal Ji) one-dimensional Ising models.

3. ALTERNATE ISING MODEL

Here the K ′is are arrranged in the manner shown in Fig.(3).

S1 S4
K ′1

S7
K ′2

S1 S2
K1

S3
K2

S4
K1

S5
K2

S6
K1

S7
K2

Figure 3.: Similar Decimation for Alternate Ising Model

In order to adopt a similar decimation procedure we need to consider four spins at a time. This is
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illustrated in Fig.(3). Using this procedure,

eK
′
1S1S4 ∗ eg1 =

∑
S2,S3

eK1S1S2 ∗ eK2S2S3 ∗ eK1S3S4 (33)

=
∑
S3

eK1S3S4 ∗ 2cosh(K1S1 +K2S3) (34)

= eK1S4 ∗ 2cosh(K1S1 +K2) + e−K1S4 ∗ 2cosh(K1S1 −K2) (35)

Like in the previous section, we consider S1 = S4 = +1 to obtain ,

eK
′
1 ∗ eg1 = eK1 ∗ 2cosh(K1 +K2) + e−K1 ∗ 2cosh(K1 −K2) (36)

and S1 = −S4 = +1 to obtain,

e−K
′
1 ∗ eg1 = e−K1 ∗ 2cosh(K1 +K2) + eK1 ∗ 2cosh(K1 −K2) (37)

Using Eqs.(36) and (37), and cosh(x)=cosh(-x) we obtain,

e2K
′
1 =

eK1cosh(K1 +K2) + e−K1cosh(K1 −K2)

eK1cosh(K1 −K2) + e−K1cosh(K1 +K2)
(38)

employing the addition properties of cosh function, we obtain,

tanh(K ′1) = tanh2(K1)tanh(K2) (39)

One similarly obtains,

tanh(K ′2) = tanh2(K2)tanh(K1) (40)

The fixed points are,{K∗1 ,K∗2} = {0, 0} or {∞,∞}.
Note that we need to block spins in a judicious way. If we block them in a non similar fashion,

i.e. if the new lattice is not alternate (see Fig.(4)), then,

S1 S3
K ′1

S5
K ′1

S7
K ′1

S1 S2
K1

S3
K2

S4
K1

S5
K2

S6
K1

S7
K2

Figure 4.: Non similar decimation

tanh(K ′1) = tanh(K1)tanh(K2) (41)

In this case a fixed point discussion is not possible as K ′2 does not exist. However, the free energy is
conserved in either case.
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4. FIBONACCI CHAIN ISING MODEL

In this section we consider a fibonacci series where two b′s are never adjacent i.e. the nearest neigh-
bour of ’b’ is always ’a’ (see Fig.(5)). We suggest a method to generate the decimation procedure
below.

s1
a

s3
b

s4
a a

s6
b

s7
a b

s9
a

s10
a b

s12
a

s1 s3
a′

s4
b′

s6
a′

s7
a′

s9
b′

s10
a′

s12
b′

Figure 5.: Blocking in the Fibonacci Ising model

4.1 Matrix method for generation

It is well know that the Fiboanacci chain can be generated by setting up a number of rules for rabbit
procreation. In the present case we generate it by the mathematical operation shown below.

M =

[
1 1

1 0

]
, N (0) =

[
N (0)A

N (0)B

]
=

[
A

B

]
: AB (42)

MN (0) =

[
1 1

1 0

][
A

B

]
=

[
A+B

A

]
: ABA = N (1) (43)

MN (1) =

[
1 1

1 0

][
A+B

A

]
=

[
A+B +A

A+B

]
=

[
N (2)A

N (2)B

]
= N (2) : ABAAB (44)

MN (2) =

[
1 1

1 0

][
A+B +A

A+B

]
=

[
A+B +A+A+B

A+B +A

]
=

[
N (3)A

N (3)B

]
(45)

= N (3) : ABAABABA

and so on.
For general iteration,

N
(n+1)
A = M11N

(n)
A +M21N

(n)
B M11 =M21 =M12 = 1 (46)

N
(n+1)
B = M12N

(n)
A +M22N

(n)
B M22 = 0 (47)

as n −→ ∞, the ratio r = limn−→∞N
(n)A/N (n)B −→ (

√
5 + 1)/2. Here NA, NB are length

scales of bond A and B respectively.
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4.2 Decimation method

Consider now the Ising Chain shown in Fig.(6):

S1 S2
JL

S3
JS

S4
JL

S5
JL

S6
JS

S1 S3
J ′L

S4
J ′S

S6
J ′L

Figure 6.: Self-similar blocking for Fibonacci chain

Let Ki = Ji/kT

HN (K) = −
N−1∑
i=1

KiSiSi+1 (48)

eK
′
LS1S3 ∗ eg1 =

−1∑
S2=+1

eKLS1S2 ∗ eKSS2S3 (49)

As in the previous sections, let S1 = S3 = +1 we obtain,

eK
′
L ∗ e2g1 = eKL+KS + e−(KL+KS) (50)

and S1 = −S3 = +1 yields,

e−K
′
L ∗ e2g1 = eKL−KS + e−(KL−KS) (51)

Using Eqs.(50) and (51), and cosh(x) = cosh(−x) leads to,

tanh(K ′L) = tanh(KL)tanh(KS) (52)

and g1 =
1

2
K ′L +

1

2
ln(2cosh(KL −KS)) (53)

For the ordered case (KL = KS) the tansformation reduces to tanh(K ′) = tanh2(K) and g1 is
given by the same expression as Eq.(18). Further, K ′S = KL and g2 = 0. Hence, all the above
equations are consistent with ordered case. The fixed points in this case are,{K∗1 ,K∗2} = {0, 0} or
{∞,∞}.

Self similarity is preserved if the new lengths follow the following relation.

L′

S′
=
L

S
(54)

But L′ = L+ S and S′ = L. Thus,

1 +
S

L
=
L

S
= x (55)

1 +
1

x
= x (56)
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which leads to x = (
√
5 + 1)/2, the golden ratio.

5. CONCLUSION

This decimation approach is perhaps the simplest version of RNG. Its extension to higher dimension
however gets tricky. The solution to this problem uses the Migdal Kadanoff transformation[4],[5].
Interestingly, this decimation procedure inspired similar work in quantum systems. We hope to
describe this quantum version introduced by Bhat, Singh and Subbarao[6] in the future.
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Abstract. To better understand the process of nucleosynthesis in stars today, advanced nuclear physics tech-
niques are needed. At the National Superconducting Cyclotron Laboratory, at Michigan State University, a new
tape transport system has been developed for this purpose. Radioactive nuclei can be implanted on the tape sys-
tem, and after detecting the products of their decay, the tape rotates to remove any remaining unwanted activity.
The present work focuses on the development of software to be used for calculating the optimum settings for
experiments using the tape transport system.
Keywords: Nucleosysthesis, Radioactivity

1. INTRODUCTION

All of the heavy elements that exist on earth today were formed inside stars through various nu-
clear reactions and processes. The process of creating elements heavier than hydrogen is referred
to as nucleosynthesis. Ever since this process was first described [1], the understanding of stellar
nucleosynthesis has advanced significantly. It is currently believed that hydrogen and helium were
created during the Big Bang [2] and then the abundance of heavier elements up to iron are created
through nuclear reactions inside of stars [1]. The elements heavier than iron are created with differ-
ent processes, which are termed the s-process, p-process, and r-process [1]. The s-process is a slow
process where neutrons are captured and γ radiation is emitted, abbreviated as (n, γ), followed by β
decays [1]. The p-process, also known as the γ-process involves the γ-excitation of nuclei followed
by the emission of charged particles and neutrons [4]. The r-process is a rapid process of neutron
capture reactions followed by β decays.

The r-process is believed to be responsible for producing nearly half of the heavy elements
found in nature [5]. Neutron capture rates, β-decay rates, and β-delayed neutron emission proba-
bilities are three important quantities that go into performing r-process nucleosynthesis calculations

∗awtorode@gmail.com
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Figure 1. The SuN (Summing NaI(Tl)) detector.

[5]. Therefore in order to better understand the nucleosynthesis of heavy elements, advanced tech-
niques are needed to measure and study decays of the exotic neutron-rich nuclei involved in the
r-process and to constrain astrophysical models. For the purpose of this paper we will focus on β-
decay rates. Neutron-rich isotopes can often undergo β− decay, during which one of their neutrons
is converted to a proton, and in this way transforms the original radioactive nucleus into a new one.
During this process, an antineutrino and electron (β−-particle) are also emitted. This process does
not change the atomic mass number of the decaying isotope, but will change the isotope itself. Once
the β decay is completed, a new element will exist which may itself be unstable and β decay. This
process will continue until a stable isotope is reached.

Since the process of β decay is important in understanding the r-process, many advanced tech-
niques and detectors have been created for the purpose of understanding it. At the National Super-
conducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU), a γ-ray calorimeter
(known as SuN) was developed for this purpose [6]. The Summing NaI(Tl) (SuN) detector shown in
Fig. 1 is used to study β decays in neutron-rich nuclei. This detector is a barrel shaped scintillator,
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divided into eight optically isolated segments of NaI(TI). Each segment is read by three photomul-
tiplier tubes (PMTs), for a total of 24 signals from the detector [6]. It is highly efficient and has a 45
mm bore-hole through its center for use around a beam pipe.

For isotopes with a relatively short half-life (roughly less than 1 second), an implantation-
β decay correlation method with fast beams can be used [3][7]. However, this technique is not
applicable if the half-life of interest is long and the total implantation rate high. For this reason, for
longer half-lives it is necessary to use alternative techniques.

Neutron-rich isotopes can be far from stability with subsequent daughter isotope decays intro-
ducing unwanted background radiation. This could mean that after only a few seconds following
implantation, the decays picked up by SuN could be decays from the daughter isotope instead of the
mother isotope. In cases where the decaying mother isotope is of interest, this poses an issue. To
reduce this background radiation, a new experimental setup was developed at the NSCL that couples
the SuN detector with a tape transport system.

The premise is that after implantation onto a section of tape, the tape is moved to remove long-
lived isotopes from the active volume of the SuN detector. Hence, one can reduce the issue of the
daughter isotope decays becoming more prominent than the mother isotope decays. The idea of
implementing a tape station has been around for over 40 years, e.g. see Ref. [9]. Since then, there
have been advancements and new ideas in the way a tape station is implemented such as SATURN
(Scintillator And Tape Using Radioactive Nuclei) created at Argonne National Laboratory (ANL)
[10].

2. SUNTAN SYSTEM

At the NSCL, SuNTAN (SuN Tape-system for Active Nuclei) was developed (Fig. 2). The tape
station consists of a main tube that fits inside of the SuN detector where tape can be fed from an
isolated chamber to the end of the tube and back via motors. The entire station is vacuum sealed
and the physical tape is stored in a large chamber outside of the SuN detector. A small portion of
tape is exposed at the end of the tube which serves as the implantation point for a rare isotope beam
inside of SuN. After a period of implantation (the duration of which is isotope dependent), the tape
is moved to expose a clean section of tape to the beam and remove unwanted daughter activity.

In conjunction with SuNTAN, a new scintillating detector (Fig. 3) developed at Hope College
was characterized for use with SuN. It is attached to wavelength shifting fiber optic cables to work
in conjunction with the tape station for the detection of β particles. The detector utilizes two PMTs
that are attached to the fiber optic cables in order to detect β decays in coincidence between one
another. SuNTAN and the fiber detector will be the focus of a forthcoming publication. This publi-
cation’s focus is on new software that accompanies SuNTAN and helps to guide the decision for the
appropriate tape cycle.
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Figure 2. A cross section of the SuNTAN system connected to the SuN detector. On
the bottom right is a railing system for moving the tape station into and out of SuN.
Above that is the tape box where the new and used tape is located. In the top left is the
SuN detector with a beam pipe going through its center. Lead bricks (green) act as a
barrier to isolate the tape from within SuN.
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Figure 3. The scintillating detector attached to wavelength shifting fiber optic cables
that carry the signal to two PMTs. After entering the PMTs the signals are recorded via
the NSCL digital data acquisition system [11].

3. GINA PROGRAM

Generations of Implanted Nuclear Activity (GINA) is a program designed to work with a tape sta-
tion. To demonstrate the need and functionality of GINA, the test case of 42S is used. The primary
isotope of 42S has a half-life of T1/2 = 1.03 ± 0.03 seconds [8]. This means that on average,
half of a sample of 42S will decay in that time. 42S will β decay into 42Cl which has a half-life
T1/2 = 6.8±0.3 seconds [8]. The daughter isotope will decay to the granddaughter isotope of 42Ar,
having a half-life of T1/2 = 32.9± 1.1 years [8]. This decay chain is perfect for the commissioning
of SuNTAN due to the short half-life of the primary and daughter isotopes, and long half-life of the
granddaughter.

The decay rate for an isotope is given by

dN(t)

dt
= −λN(t) = −N(t)

τ
, (1)

where N is the number of radioactive nuclei, λ is the decay constant, τ is the mean lifetime of the
particles within the material, and t is time. The decay constant is related to the half-life (T1/2) by

λT1/2 = ln(2) =⇒ T1/2 = τ ln(2). (2)

The rare isotope beam of the primary isotope will be continually implanted onto the target tape.
Thus, the number of primary isotopes at the target location will continually increase as the beam is
being deposited. The decay rate is directly proportional to the number of nuclei of the isotope that
is present and thus the rate of decay will eventually reach equilibrium with the rate of deposition.
The daughter isotope will similarly do this, but over a much longer time, due to a slower decay
rate. This will cause the decay rates of the daughter isotope to slowly approach the decay rates
of the primary isotope which will make it difficult to distinguish which isotope is decaying in the
detectors for a given event. At the start of this cycle, the primary isotope decay rates are prominent
over the daughter isotope (as there are little to no daughter nuclei present) and thus it is favorable
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to collect data at this point. When it is determined that the daughter isotope is providing too much
contamination, the tape of SuNTAN can be moved so the system can return to this favorable state.
Two important factors to consider when running an experiment with this system are to maximize
the number of primary (mother) decays and to minimize the contamination from other isotopes
decaying.

In order to determine sufficient timing parameters for tape rotation, a method was established
to calculate decay rates per isotope of decay chains consisting of multiple generations. The GINA
program performs this method and provides various information for determining how to optimize
the favorable collection period of a decay of interest. GINA performs multiple functions related
solely to the radioactive isotopes at the target location with other features relating to the isotopes
being sent through the SuNTAN system. The GINA program uses a Graphical User Interface (GUI)
programmed to work with up to four generations of decay, and the method used is generalized to
work with any decay chain.

First, GINA calculates the number of radioactive isotopes at a target location based on some
initial and constant rate of isotope implantation over some time. Let N denote the number of ra-
dioactive isotopes at a location and T1/2 denote the half-life of a nucleus. Suppose we allow the
superscript to denote the generation as a number, where (0) refers to the mother nucleus, (1) the
daughter nucleus, (2) the granddaughter nucleus and so on such that (i) would represent the ith gen-
eration nucleus. The number of mother nuclei only depends on the number of implanted nuclei and
the number of nuclei that have decayed over some small amount of time ∆t. If the total amount of
elapsed time for a system is given by n∆t, where n ∈ N (n = 1, 2, 3, . . . ), then one can represent
the number of existing nuclei at any point by

N (0)
n = N

(0)
1 +N

(0)
n−1e

− ∆t

T
(0)
1/2

ln(2)

. (3)

Representing the values in a series such as this was useful for programming purposes.
Next, for a later generation, the number of nuclei will depend on how many of that generation’s

nuclei decayed as well as how many of the previous generation’s nuclei decayed into it. This gives

N (i)
n = N

(i−1)
n−1

(
1− e

− ∆t

T
(i−1)
1/2

ln(2)
)

+N
(i)
n−1e

− ∆t

T
(i)
1/2

ln(2)

. (4)

If it is assumed that the last stage has a near infinite half-life, the limiting case will produce a final
step of this chain to be equivalent to

N last
n = N last

n−1 +Nd
n−1

(
1− e

− ∆t

T
last−1
1/2

ln(2)
)
. (5)

These relations can be proven by induction and are demonstrated in Fig. 4 for the example chain 42S
→ 42Cl→ 42Ar.

During the experiment, the important number is not necessarily the number of nuclei but the
number of decays. Therefore, GINA uses this information to determine the radioactive decay rates
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Figure 4. Using an input rate of 100 particles per second, this demonstrates the total
nuclei count for an implanted isotope (as generated by the GINA program) of 42S (solid
line) which decays into 42Cl (dashed line) and 42Ar (dotted line).

of each isotope at the implantation point. The values N0
n, and N i

n all represent a total number of
particles of a specific isotope. Eq. 1 defines the decay rate of an isotope. Using the total particle
numbers calculated in Eq. 3 - 5, one can determine the decay rate to be

Di
n =

dN i
n

dt
=
N i

n ln(2)

T i
1/2

. (6)

These represent the total decays per second and are demonstrated in Fig. 5.
Finally, GINA does a calculation of the contamination on the implantation point relative to the

primary isotope. The contamination is defined as the number of decays the non-primary isotopes are
producing with respect to the number of decays the mother nuclei are producing. The contamination
can be expressed as a percentage using

Cn =
1

D
(0)
n

∞∑
k=1

D(k)
n × 100%. (7)

Following this, another useful value to determine proper experimental parameters using the tape
station is the deposited implant loss, L. This is the total percentage of implanted particles that have
decayed and is given by

Ln =
1

nN
(0)
1

∞∑
k=i+1

N (k)
n . (8)
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Figure 5. Using an input rate of 100 particles per second, this demonstrates the total
nuclei decay rate (as generated by the GINA program) for an implanted isotope of 42S
(solid line) which decays into 42Cl (dashed line) and approximating 42Ar to be stable.

Both of these values are demonstrated in Fig. 6.

From the sequences listed above, the only needed inputs are the half-lives of each isotope. Be-
cause of this, GINA takes the half-lives of the primary isotope and each generation isotope up to four
isotopes as initial input values. These are what is used to perform the calculations described above
and no other values are needed. For the case of 42S, one can see how the contamination percent-
age increases over time. The acceptable amount of contamination can be determined based on the
detectors and methods being used for the specific setup as it was for the SuNTAN commissioning
experiment.

4. CONCLUSION

Future experiments using SuNTAN have been planned and the GINA program is available and ready
to use for the preparation of these experiments [12]. The program is not limited to use with SuNTAN
and is made to be easily adapted for use with an arbitrary number of generations within a decay
chain. The GINA program along with SuNTAN will help to further increase the understanding of
the r-process and will lead to the study of isotopes that have not been studied previously.
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Figure 6. This demonstrates the total nuclei contamination (solid line) rate and implan-
tation loss (dashed line), as generated by the GINA program, for an implanted isotope
of 42S which decays into 42Cl and approximating 42Ar to be stable.
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Abstract:  The physics of the crumpling of paper balls is quite complex and is not yet fully understood. Researchers have
studied the 3D structure of crumpled paper balls using advanced experimental techniques like X-ray micro-tomography and
discovered that crumpling is similar to other classic non-equilibrium problems like turbulence and very difficult to model
mathematically.  We have investigated how the diameter of paper balls obtained by crumpling square sheets of paper of
different areas by hand, depends on the side-length of the paper. Our first model which assumed the density of the paper ball
to be equal to the density of the paper used failed by predicting the wrong thickness of paper used. However, our second
model which only equated the mass of the paper used to the mass of the paper ball obtained, and allowed for the effective
density of the crumpled paper ball to be different from the density of paper used was  successful in predicting the correct
thickness of the paper. From this observation, we concluded that the paper balls obtained from crushing by hand have a lower
(around 3 times) constant effective density than the density of paper. If useful applications could be found for crushed paper
balls,  which  have  many  interesting  properties  like  low  density  with  high  compressive  strength  and  energy-absorbing
properties, they could provide useful solutions for paper-waste management.

Keywords: paper ball, crumpling, effective density

1. INTRODUCTION

Academic institutions and corporate offices do a lot of paper work and generate a lot of paper waste. Recycling
the paper by turning it back to pulp is one way of managing this waste. However, crumpled paper balls could also
provide some alternative solutions for waste management since they have many interesting properties like high
strength to weight characteristics, high compressive strength and high energy-absorbing properties [1] opening the
possibilities for many innovative applications. 

Earlier studies on crumpled paper balls have tried to model the 3D structure of crumpling using very advanced
experimental techniques like X-ray micro-tomography [2] and laser-aided topography [3] or studied the shape,
response and stability of conical dislocations, the simplest type of topological crumpling deformation [4]. Another
study has established power-law dependence between the compaction force required to crumple a sheet into a ball
and the diameter of the crumpled ball. In this study we investigate how the diameter of crumpled paper balls
depends on the side-length of square sheets of paper used, by keeping the compaction force constant and equal to
the maximum force that can be exerted by hand while crumpling the sheets of paper into a ball.
*jtarush.470.2019@doonschool.com, **aayush.467.2019@doonschool.com, #gya@doonschool.com
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2. HYPOTHESIS

In the first hypothesis, we equated the volume of the sheet of paper to the volume of the paper ball by assuming
the density of the crumpled paper balls to be equal to the density of the paper used.

l2 t=
4
3

π
d3

8
(1)

where l = length of side of square sheet of paper, t = thickness of sheet of paper, d = diameter of crumpled paper
ball.
From equation (1), we obtain 

d3
=( 6 t

π ) l2
(2)

Thus, on plotting d3 vs l2, we should obtain a linear graph passing through the origin, and we should be able to
calculate the thickness of the sheet of paper used from the slope of the graph. If it agrees with the actual thickness
of the sheet of paper measured directly (0.00992 ± 0.00002 cm), then we can conclude that the hypothesis is
correct.

In  the  second  hypothesis,  we  equate  only  the  mass  of  the  sheet  of  paper  to  the  mass  of  the  paper  ball.

ρp l2t=ρb
4
3

π
d3

8
(3)

where ρp = measured density of paper sheet = 0.78 ± 0.02 g.cm-3, ρb = effective density of crumpled paper ball.
From equation (3), we obtain 

d3
=(

ρp

ρb
)( 6 t

π )l2
(4)

The second hypothesis predicts a larger value for the slope of the linear fit if the effective density of the paper
balls is lesser than the actual density of the sheets of paper used to make the crumpled paper balls. The thickness
of the sheets of paper calculated using this value of slope should give a different value and thus can be used to
identify the correct hypothesis by comparing it with the actual measured value of thickness of paper.
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3. METHODS
Identical A3 sheets of paper were taken and cut into 40 square pieces (5 sets of eight different side-lengths). The
square pieces of paper were crumpled into spherical paper balls by applying the maximum force possible by hand.
The compacting force applied to make the crumpled paper balls was made constant in this way. The diameter of
each paper ball was then measured using vernier caliper or screw gauge. (see Figure 1)

The density ρp of the sheets of paper used to make the crumpled paper balls was calculated to be 0.78 ± 0.02
gcm-3 by first measuring the mass of the biggest square piece of paper and dividing the mass by its volume. The
thickness of a single sheet of paper,‘t’ was calculated to be 0.00992 ± 0.00002 cm by measuring the thickness of a
pile of 48 sheets of paper using a screw gauge. The effective density of the crumpled paper ball for each diameter
of crumpled paper ball was calculated using the mass per unit area and area of the sheet of paper used to make the
paper ball, and the mean diameter of the crumpled paper ball.

4. RESULTS AND DISCUSSION
Figure 2 shows that the effective density of the crumpled paper balls does not depend on their diameter. The data
point for the smallest paper ball is an outlier and the error could be due to the fact that its diameter was measured
using a screw gauge whereas the diameters of all the other paper balls were measured using vernier calliper. The
paper ball could have been crushed more during the process of measuring the mean diameter using screw gauge,
causing the error.
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Figure 1.  Measuring the diameter of crumpled paper
balls



The mean effective density of the crumpled paper balls ρb was found to be 0.25 ± 0.06 gcm-3 which is much less
than the density ρp of the sheets of paper used to make the crumpled paper balls. 

Thus, hypothesis 1 has been proven to be invalid, since it assumed the density of the crumpled paper balls to be
equal to the density of paper.
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Figure 3 shows that  the  linear  best-fit  straight  line  passing through the origin as  predicted by hypothesis 2.
Furthermore, the thickness of the sheet of paper calculated from the slope of the linear best-fit straight line by

using the correcting factor 
ρp

ρb

=3.09 ,which takes into account the reduced effective density of the crumpled

paper balls was found to be 0.012 ± 0.006 cm which is in very good agreement with 0.00992 ± 0.00002cm (the
measured thickness of 1 sheet of paper). The uncertainty in the diameter of the crumpled paper balls was found to
increase with the size of the paper balls because bigger paper balls would not acquire a perfectly spherical shape,
and would compress more during the measurement process causing variation in the measured values for each trial.

For further research, a similar study could be conducted for balls made of strings or ribbons of different materials
like wool, cotton, silk, etc by first soaking them in a liquid adhesive and then removing the excess adhesive by
allowing it to drip away during compression. Their material properties like effective density, compressive strength
and energy-absorbing properties could be studied.

5. CONCLUSION
The effective density of crumpled paper balls (0.25 ± 0.06 gcm -3) was found to be around 3 times smaller than the
density of paper (0.78 ± 0.02 gcm-3) used to make them by compacting at maximum pressure that could be exerted
by hand, for square sheets of paper of side-lengths ranging from 6 cm to 30 cm. The effective density of crumpled
paper balls does not depend on the area of paper used or the diameter of the crumpled paper balls formed. It
depends only on the maximum compacting force applied to crumple and make the paper balls,  which was a
constant in this investigation and equal to the maximum force that could be exerted by hand. The variation in
maximum force exerted by a 17 year old male teenager or a male adult while making a crumpled paper ball by
hand did not cause any significant change in the mean diameter of the crumpled paper ball.  Further investigation
may be carried out by crumpling the paper balls using a machine which can exert a known maximum force. The
dependence of the effective density of the crumpled paper balls on the maximum force applied during crumpling
could then be confirmed. The maximum force applied to make the crumpled paper balls can be varied over a wide
range using a machine. Pieces of paper having smaller area may be used to investigate whether the anomalous
data point corresponding to paper of area 33.4 cm2 was really an anomaly or a trend.
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