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A brief introduction to the principle behind realization ofa quantum computer is presented. After
a review of some concepts Quantum Mechanics that are useful in understanding the working of a
quantum computer, we look at the various components and processes that go into building a quantum
computer. A quantum algorithms for database search is described. Finally, we discuss the criteria
for devising a practical quantum computer and the present status of such a device. [1]

1. INTRODUCTION

One of the technological advances that had a profound influence on human progress during the last
century was the design of a digital computer. From the limited objective of providing a fast tool for
scientific computation with possible technological applications in areas such as space science and
meteorology, computers have come to influence our day to day lives through their use in diverse
areas, such as, business finance, communication technology(E-mail, mobile telephony) , sound
and imaging (DVD players, video games) etc. At the core of these applications is the concept
of splitting individual chunk of information (data) into bits which can be stored and manipulated
through electronic circuitry. The sequence according to which the bits are to be manipulated in order
to achieve the desired objective is known as an algorithm. Behind the successful implementation of
every algorithm is the concept of a Turing machine, introduced by the mathematician Alan Turing
[2], which consists of three basic elements, viz., (i) a tapeconsisting of cells each of which can
store one bit of information, (ii) a control unit, which has afinite number of states, including a halt
state to signify termination of computation and (iii) a read/write head. Though this basic computer
is capable of storing and processing a limited amount of information at a time, it has, in principle
an unlimited amount of time in which to achieve its goal. The celebrated Church- Turing thesis [3]
states that every computable function can be computed effectively by a finite number of steps of a
Turing machine.
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Ever since the first digital computer was invented, efforts for making faster and faster computers
which can store more and more memory have been made. The emergence of semiconductor devices
saw an exponential increase in both the processing speed andmemory, which were further enhanced
by the development of integrated circuits. The co-founder of Intel Corporation, Gordon Moore is
credited with predicting the pace of semiconductor technology through “Moore’s law” which states
that the number of transistors and resistors on a chip doubles every 18 months. Though Moore
corrected himself in 1975 and made the doubling period as 24 months instead of 18, a consequence
of the dense packing of components on a chip is that as the miniaturization of computing devices
continues, macroscopic physics will no longer determine the behavior of the processors; they will
instead be determined by quantum laws. It is even conceivable that a single electron may store
one bit of information. It may be remarked that though the physics of semiconductor devices on
which the present day processors are based can only be satisfactorily explained from a quantum
mechanical viewpoint, they are notquantumin the sense that information storage and processing
in such computers (which we shall designateclassical computers) are based on a macroscopic two
level systems.

Other than the fact that devising a computing machine whose working is based on microscopic
laws is an intellectually challenging task, a quantum computer has several advantages over a con-
ventional (classical) computer. The power of a quantum computer is based on two properties of a
quantum state, viz., superposition and entanglement. While the state of a classical bit is determinis-
tic, i.e., it is either in the state 0 or in the state 1, a quantum bit (called a qubit) can be simultaneously
in both the states. In general, a quantum system can be in a superposition of different states at the
same time. Further, since these states evolve linearly withtime, all the components of a superposed
state are processed simultaneously, giving an unprecedented parallelism which cannot be matched
by a classical computer.

In the theory of computation, the difficulty level of a problem is determined by the time an algo-
rithm takes to obtain a solution. For a given input sizen, if the time takenm(t) does not exceed that
computed by a polynomial of degreek, i.e. if m(t) ∼ O(nk), wherek is a constant, the problem
is said to beeasyand solvable in polynomial time whereas adifficult , exponential time algorithm
is one where the time taken isO(kn) , wherek > 1. One of the important applications of this
property is that a quantum computer may be in a position to solve certain problems in polynomial
time which could not hitherto be solved by a classical algorithm. An example of such a problem is
Shor’s factorization of a composite number [4].

The second property of a quantum state is that the states of two or more particles of a composite
system can be so entwined so that if any of the constituent particles is disturbed, the other con-
stituents are also influenced by it. The entanglement of the constituent particles persist even when
they are separated by space-like distances. This is in apparent violation of special theory of relativity
because when two objects are separated by space-like intervals, no information can reach either of
the bodies due to an event happening in the other body unless information can travel with a speed
greater than the speed of light in vacuum. This has been termed as “spooky action at a distance” and
is of use in applications such as quantum teleportation and cryptography. Feynmann [5] was the first
to point out that since the physical world is quantum mechanical, simulating laws of physics using
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a classical computer leads to an exponential slowing down inthe processing speed of a computa-
tion. What exactly is the role of entanglement in increasingcomputational speed has been a matter
of much debate and controversy. It has been suggested [6] that the success of Shor’s algorithm is
primarily due to the large entanglement of the quantum register.

David Deutsch [7] generalized the Church-Turing thesis to establish what can be called a universal
quantum Turing machine. Though it was not able to simulate the machine in all cases in polyno-
mial time, Deutsch’s algorithm was faster than the corresponding classical algorithm. Grover [8]
designed an algorithm which aims at searching for a particular item from a database ofN entries. A
classical search algorithm requiresO(N) searches whereas Grover’s algorithm achieves this task in
O(

√
N) steps. Even this quadratic speeding up can be of substantialinterest. For instance, consider

a database containing entries of the entire one billion population of India. To search for a particular
entry in this database (the so called needle in the haystack)at a processing speed of 1000 searches
per second would take 10 days of continuous processor time. Grover algorithm would complete this
task in about five minutes.

In this review we will introduce the readers to some of these interesting applications of quantum
computation. In Section 2 we will review some basic conceptsof quantum mechanics which will
be useful in understanding the working of a quantum computer. In Section 3, we discuss Grover’s
search algorithm. In Section 4, we will comment on practicalrealization of a quantum computer.

2. PRELIMINARY CONCEPTS

2.1. Quantum Mechanics the Copenhagen interpretation

In this section we assume the familiarity of the reader with undergraduate level quantum mechanics.
We will highlight some salient features of what has come to beknown as the Copenhagen inter-
pretation of quantum mechanics, primarily due to Niels Bohr, but contributed in good measure by
Heisenberg, Max Born, Dirac and many others.

In classical physics, the state of a system (which could be described by dynamical quantities such
as position, momentum etc.) is determined by its state at an earlier time and through a deterministic
set of laws (e.g., Newton’s laws) by which the system evolveswith time. Thus if we know the state
of a system at the present time, we can, by solving the equation of motion, determine its system at
any time in the past or in the future. Further, the state of thesystem is observer independent, i.e., a
state is intrinsic to the physical system and is not influenced by the fact whether the state is being
observed or not. The accuracy of the measurement is only limited by the accuracy of the measuring
apparatus which, in principle, can be made indefinitely accurate. Quantum mechanics, however,
imposes a more fundamental limitation on the outcome of a measurement.

While Heisenberg’s uncertainty principle and Bohr’s principle of complementarity are essential
ingredients of the Copenhagen interpretation, here we are mostly concerned with an aspect of the
quantum postulates, known as thecollapse of the wave function. In quantum mechanics, the state
of a system is described by a state vector in a linear vector space known as the Hilbert space. The
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more familiar wave function is the projection of this vectoron to the position space. The state
vector evolves with time according to Schrödinger equation. To every physical observable, there
corresponds an operator which is Hermitian. This operator acts on the state of the system changing
it to a new state. In general, a quantum system exists as a linear superposition of component states,
the weight of a given component in the superposition being known as its amplitude. As long as a
state is left undisturbed, it evolves with time as per Schrödinger equation. If, on the other hand, an
observation is made of a physical observable, it would “collapse” into one of the eigenstates of the
operator corresponding to the observable. While the original state was a superposition of various
eigenstates of the operator, the probability with which a particular eigenstate would be found as a
result of measurement is proportional to the square of the amplitude of the eigenstate in question
in the state immediately before measurement. Thus, unlike the situation in classical physics, a
measurement of a quantum system does not provide information about the state of the system, but
does so only about the state to which it has collapsed.

To illustrate the above, let us consider a quantum system which can exist in one of the two states|
0〉 and| 1〉. These states could represent, for instance, the state of polarization (vertical or horizontal)
of a photon or the spin projection of an electron (up or down) or the ground state and the excited of
an atom. An arbitrary state| ψ〉 of the system is given by| ψ〉 = α | 0〉 + β | 1〉, whereα andβ
are the probability amplitudes of the states| 0〉 and| 1〉 respectively. If the state is normalized, the
probability sum demands| α |2 + | β |2= 1. One can easily generalize the situation to the case
where the state vector is expressed in ann component basis so that| ψ〉 =

∑n−1

i=0
αi | i〉 , where the

amplitudesαi satisfy the normalization constraint
∑

i
| αi |2= 1. As the system evolves, the state

will change with time but the normalization constraint has to remain satisfied. Operators which can
act on the state vector while preserving the norm are known asunitary operators and will be denoted
byU . A quantum computer works with logic gates which consist of unitary operations.

2.2. Reversibility

An advantage of working with unitary gates is that quantum computing is intrinsically reversible. A
gate is said to be reversible if it is possible to retrieve theinput from the output by simply reversing
the sequence of operations which yielded the output starting with the input. Gates used in classical
computation are, in general, not reversible. For instance,an AND gate is not reversible because,
given a 0 output, it is not possible to determine which of the three pairs of input, viz., (0,0), (0,1) or
(1,0) had yielded this result. Thus the operation of the gatehas resulted in erasing one bit of infor-
mation. Landauer [9] had shown that each time a single bit of memory is erased, a minimum amount
kB ln 2 of energy gets dissipated into the environment. This is known as Landauer’s principle. If
one could carry out computation without erasing data, we would generate less heat and hence have
a more energy friendly device. It is possible to design reversible gates and carry out computation
only using such gates. Charles Bennett [10], has shown that it would be possible to make a classical
computer reversible by having it save all the information ona blank tape it would otherwise throw
away. This would, however, increase the memory requirementof a computer significantly.
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2.3. Qubits

The two level state described above can be used to define a quantum bit, known as qubit, as distinct
from a classical bit or acbit. For instance, in a classical computer, the voltage betweenthe plates
of a capacitor could represent a cbit, with a charged capacitor representing the bit 1 while when the
same capacitor is discharged it could represent the cbit 0. Unlike a classical bit which can be either
in the state| 0〉 or in the state| 1〉 at a given time (i.e., either the capacitor is charged or discharged),
a qubit lies in a vector space parameterized byα andβ which can take infinitely many complex
values. A qubit in superposition is in both of the states and at the same time. These qubits form the
basic unit of quantum computing and quantum information.

One needs to understand this strange concepts of being in twostates at the same time. The
following experimental situation illustrates this concept.

D2

D1

D2

D1

Figure 1. (a) A single photon is incident on a half silvered mirror. (b)The photon

undergoes multiple reflections and transmission through the mirror arrangements.

In figure (1a), a single photon is incident on a half silvered mirror. The photon is detected either
by the detector D1 or by the detector D2 with equal probability. In figure (1b), the photon first falls
on the half silvered mirror and can apparently take either the reflected path or the transmitted path.
On both these paths a full silvered mirror is placed which acts as a reflector. A second half silvered
mirror allows the photon to reach either of the two detectors. One would expect that the photon, in
this case will be detected either by D1 or by D2 with 50% probability. It is, however, found that the
photon is detected with 100% probability only by the detector D2 and never by D1. Clearly, in this
case the photon must have made up its mind to reach only D2. This can happen if photon has taken
both the paths and arrived at the second half silvered mirrorto combine constructively for D2 and
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destructively for D1. These paths must also have maintainedphase correlation to have been able to
interfere, i.e., photon must have been in a coherent superposition of being in both the reflected beam
and the transmitted beam.

In order that qubits are useful in quantum computation, we need to have states belonging to a
composite system. If the composite system consists of several isolated subsystems, the state of the
system is simply a direct product of the states of the constituents. One can then keep track of the
qubit of each subsystem. A two qubit state| 01〉 denotes the state of a system whose first particle
is in a state with qubit| 0〉 and the second in the state with qubit| 1〉 . A not so explicit but still
identifiable as two separate qubit state is(1/

√
2)(| 00〉+ | 01〉) which is a product of the first

particle in the state| 0〉 and the second in the state(1/
√

2)(| 0〉+ | 1〉). If one considers interacting
systems, it may no longer be possible to factorize the state in this manner. When this happens, we
say that the qubits are entangled, a term apparently coined by Schrödinger. The simplest example of
an entangled system is a singlet state arising from two spin half particles. The state of this system
1/

√
2(| 01〉− | 10〉) cannot be expressed as a product of the states belonging to the individual

particles. If one were to measure the state of the first particle and find that it has collapsed to a state
| 0〉 , the second particle would have instantaneously collapsedto the state| 1〉, no matter how far
removed it was from the first particle.

One can use these to generate quantum registers. For instance, a 3 qubit quantum register con-
taining an equally superposition of states is represented by

| ψ〉 =
1√
8
[| 000〉+ | 001〉+ | 010〉+ | 011〉+ | 100〉+ | 101〉+ | 110〉+ | 111〉] (1)

If such a state is measured, it would collapse to one of the constituent states with a probability
1/8. It would not, however, be possible to infer from the result of such a measurement what the
state of the system was before the measurement. For instance, if we obtained a state| 000〉 as a
result of a measurement, it is as likely to have collapsed from the state of eqn. (1) as from a state
(1/

√
8)(| 000〉+

√
7 | 111〉) .

An unitary operation which mixes the one qubit state is a Hadamard gate, which acting on a state
| 0〉 gives a state(1/

√
2)(| 0〉+ | 1〉) and acting on a state| 1〉 gives(1/

√
2)(| 0〉− | 1〉). This gate

is useful in quantum computation because when each of then bits of a state| 0, 0, . . . , 0〉 is passed
through a Hadamard gate, it produces an superposition of allpossiblen-qubit states. A two qubit
state which is useful is known as a controlled-NOT gate (C-NOT) in which one of the qubits acts as
the control while the other is the target. If the control bit is in state| 0〉 it leaves the target unaltered
while when the control bit is| 1〉 it flips the target bit. Consider what would happen if a two qubit
state| 00〉 is subjected to an operation depicted by the circuit of figure2. Here the first qubit is
passed through a Hadamard gate after which it acts as the control bit of a C-NOT gate which acts on
the second bit as its target.

Note that when the control bit is 0 the target bit remains zerowhereas when the control bit is 1, it
becomes 1 . As a result the final two bit state becomes(1/

√
2)(| 00〉+ | 11〉) which is an entangled

state.
The natural basis for measuring two qubit states consist of four states| 00〉, | 01〉, | 10〉, | 11〉
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Figure 2. A combination of a Hadamard gate and a CNOT gate is used produce an

entangled state.

which are known as computational basis. The states are un-entangled. However, by taking a suitable
linear combination, one can define a different basis set. Onesuch basis where the states of the two
particles are entangled is known as the Bell basis. The basisstates in this case are

φ+ =
| 00〉+ | 11〉√

2

φ− =
| 00〉− | 11〉√

2

ψ+ =
| 01〉+ | 10〉√

2

ψ− =
| 01〉− | 10〉√

2
(2)

2.4. Problem of Measurement

The principle of superposition, which gives a quantum computer an immense advantage over a
classical computer because of the former’s ability to parallel process several states at a time, is also
a cause of some concern. At the termination of an algorithm, one needs to measure the desired
output. However, as the output is likely to be a component of asuperposition, a measurement at the
end of the process will only provide the correct output with aprobability. It is possible to design
algorithms such that the probability distribution at the end of the calculation is skewed in favour of
the desired component. It will then be possible to run the algorithm repeatedly and get the correct
output from the results occurring most often.

It was mentioned that the quantum states are coherent superposition of states. As long as such
states are acted upon by unitary operators, the coherence will be maintained. To do so would require
that the qubits should be isolated from stray particles of the environment. This, however, is not
practically feasible as the qubits must be sufficiently openat least during the time of gate operations
so that they can be controlled and manipulated externally. The decay and loss of phase coherence
when the qubits interact with the environment is known asdecoherence, which needs to be kept
under control
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There are a few problems for which quantum computers would offer a substantial speed up over
classical computers. Peter Shor’s algorithm [4] on prime factorization of composite numbers is
one such problem. It may be remarked that a successful implementation of such an algorithm will
have far reaching consequence on cryptographic protocol widely used for web transactions. The
RSA public key distribution [11] relies on the fact that while it is simple to multiply to large prime
numbers, the reverse problem, viz., factorization of a large composite number into its prime factors
cannot be achieved in polynomial time. Thus, if one could devise an efficient polynomial time
algorithm for factorization of a large composite number which is known to be a factor of two large
prime numbers, it would effectively destroy the public key cryptographic protocol which is widely
in use. A second algorithm which achieves a quadratic speeding over the corresponding classical
algorithms is Grover’s [8] search algorithm. In the following section we discuss this algorithm in
some detail.

3. GROVER’S SEARCH ALGORITHM

Search algorithms are designed to locate an item having a defined characteristics from a database.
A database may be structured or unstructured. For instance,in a telephone directory, the names
are alphabetically arranged but the associated telephone numbers are randomly distributed. Such a
database is structured with respect to names but unstructured with respect to the telephone numbers.
Trying to find the name of a person from his telephone number from such a database is like searching
for the proverbial “needle in the haystack !”. One can formulate this problem mathematically as
follows. Suppose we have a data base ofN = 2n number of elements. We define a functionf(k)

which is such that for all values ofk(0 ≤ k ≤ 2n − 1) the function takes the value zero except that
there exists a singlek0 for which f(k0) = 1. If the database is random, one has to search through
the entire database, evaluate the functionf(k)for each value ofk, until we find the value ofk for
which the function evaluates to unity. To locate with a probability of half we requireN/2 number of
trials, and the definitive search can require evenN − 1 number of trials, for the extremely unlucky
case when the last item of the database happens to be the one weare looking for. The number of
trials isO(N). A structured database will obviously reduce the effort.

Grover [8] designed an algorithm for searching for an element in a quantum computer, which
speeds up the search quadratically, i.e. instead of the number of trials beingO(N) , it requires only
O(

√
N) number of trials. Since we are working with a quantum computer, we assume that we have

N = 2n number of states, each having the same amplitude. For simplicity, we will take these states
to form an orthonormal basis. With each item in our database we associate one basis state. One of
these basis states ismarked, i.e. it has certain properties we are looking for. The algorithm starts
with an initial state| s〉 = 1√

N

∑N−1

i=0
| x〉 which is a linear combination of theN states in which

the amplitude of each of the basis states is the same, i.e.,1/
√
N . The search is accomplished by

selective amplification of the state corresponding to the item to be found. Let us call our marked
state| w〉 . To start with the amplitude of the marked state is also equalto 1/

√
N .

Certain quantum operations have to be done on the standard state. These operations are executed
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by quantum circuits corresponding to the unitary operators. The first of Grover’s operations is to
operate the standard state| s〉 with an operator which leaves all components of| s〉 other than that
along| w〉 unchanged while the sign of the component along| w〉 is flipped. It is easy to visualize
this in a vector diagram shown in Fig. 3. The figure has been drawn in two dimensions in the plane
containing vectors| s〉 and| w〉 though the vectors| s〉 and| w〉 are in theN dimensional vector
space. After the first rotation, the vector points in the direction indicated by| s1〉. This is followed
by a second rotation which takes| s1〉 to | s2〉 which has the component of| s1〉 parallel to| s〉
unchanged but flips its sign perpendicular to it. It can be seen that the angle between| s〉 and| s2〉 is
2θ towardsthe marked state| w〉.

s

s

w

w

s1

s2

θ
θ

2θ

Figure 3. A geometrical representation of Grover’s rotations. Afterone iteration the

angle between the initial and the final directions of make an angle2θ.

Consider the simplest case of N=4. Since the magnitude of each of the components in are equal,
the cosine of the angle between| w〉 and| s〉 is 1/

√
N . ForN = 4, the angle is60◦. Thus after

one Grover iteration, the marked state is found with certainty. For a generalN , the same principle
is valid. Recall that for largeN , sin θ ≃ θ = 1/

√
N . The number of iterationn required to align

the vector| s〉 with the marked state| w〉 is given by

n · 2θ =
π

2

which gives

n =
π

4θ
≈ π

4

√
N (3)

showing the quadratic speeding up of the search algorithm.
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4. PRACTICAL RELIZATION OF A QUANTUM COMPUTER

Practical realization of a quantum computer is a challenging problem. Simply stated, a quantum
computer is a device which uses quantum states to encode, process and store information. In prin-
ciple ,any two level system, such as, a spin half particle or atwo level atomic system can be used
for preparing a qubit. However, in practice, a set of criteria known as DiVincenzo [12] criteria are
considered to be crucial for building a physical quantum computer. These criteria are summarized
in the following.

1. A scalable physical system with well characterized qubits : We have seen that qubits are essen-
tially the workhorse of a quantum computer. We need them for encoding and storing of information.
As we need to manipulate the qubits externally, it is necessary to clearly identify the states which
define qubits and their interaction with other states of the system, with states of other qubits and
with external fields. For instance, if we take a qubit to be defined as the two lowest lying states of
the system, the probability of transition to higher lying states should be negligible. A wide range
of physical systems can be used as qubits. These include (i) nuclear spins addressed through nu-
clear magnetic resonance , (ii) hyperfine or Zeeman sub-levels in electronic ground states (iii) single
photon with polarization states (vertical and horizontal)representing the up and down states, (iv)
electron spins (v) flux qubits in superconducting Josephsonjunctions etc.

2. Ability to initialize the state of the qubits to a simple fiducial state such as : This is identical
to the requirement of initializing the registers in a classical computer. Registers would otherwise
contain “garbage” and the result of computation become untrustworthy. In many applications such
initializations can be simply done by cooling the atoms to a low temperature ensuring that the atoms
remain in their ground state. This may not, however, be always possible (e.g. in liquid state NMR)
in which case one can use a thermally populated state as the initial state.

3. Long decoherence times, much longer than the gate operation time : Earlier in the article we
have commented on loss of coherence due to interaction of thequbits with environment. Decoher-
ence is important as it is the time required for a quantum system to interact with environment and go
over to a classical regime. After this. the system cannot evolve as a quantum system. As the qubits
must be externally manipulated for logic gate operations, they have to be exposed to environment
during such process. The decoherence time should, therefore, be long compared to gate operation
time. In many applications the decoherence times may be of the order of microseconds. As gates can
be implemented in as short a time as a pico-second, we can still perform about a million operation
on the system before decoherence sets in. There has to be sometradeoff between the need to expose
the qubit to the environment and decoherence that must inevitably set in. Such non-controllable
errors are even known in classical computing. The idea of a fault tolerant computing is to retrieve
right information from a noisy channel through error correcting codes. Current classical computers
can tolerate 0.01% error in data. Quantum computers still have a long way to go in this direction.

4. A “universal” set of quantum gates : Data manipulation in acomputer (classical or quantum)
is done using logic gates. In quantum computers such gates would mimic unitary operators, which
acting on a quantum state would give rise to a new state. As mentioned earlier, unlike classical gates,
the quantum gates are reversible. This implies that the number of input qubits is equal to the number
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of output qubits. Several one-qubit gates have been designed. Hadamard gate, which acting on a
state| 0〉 gives a symmetric combination of the states| 0〉 and| 1〉 ,and, which acting on a state| 1〉
gives the anti- symmetric combination of the same is widely used in quantum circuits. A sequence
of two Hadamard gates can be used to simulate a beam splitter depicted in Fig. 1. Yet another
one-qubit gate is the NOT gate. CNOT gate, described earlieris an example of a two-qubit gate.
There are gates with three input-output qubits as well. It iswell-known that in classical circuits,
the NAND gate is universal, i.e., any logic operation can be performed using NAND gates alone.
Several universal family of quantum gates have been identified. One such family consists of the
Hadamard gate, the CNOT gate, the phase gate and theπ/8 gate, the last mentioned gate generates
a phase difference ofπ/4 between the bits 0 and 1.

5. A qubit specific measurement capability : We have briefly touched upon the problems related
to measurement process. The measurement process depends onthe system under consideration. In
most cases projective measurements are the most commonly used method to extract the output. In
some cases (e.g. in liquid state NMR computer) such measurements are not feasible and one makes
ensemble average measurements.

There are two more subsidiary criteria which must be satisfied if the quantum computers are to be
networked. We will not go into these additional criteria.

At present experimental realization of a practical quantumcomputing device are based on the
following techniques :

(i) NMR in both liquid and solid states

(ii) Coupled atoms and photon in an optical cavity, the so-called cavity-QED

(iii) Trapped neutral atoms or ions

(iv) Semiconducting quantum dots

(v) Superconducting Josephson junctions

(vi) Photonic circuits.

Shor’s factorization algorithm has been successfully implemented on a seven qubit NMR machine
while the same has been implemented with five qubits on a photonic chip. While a full-fledged
quantum computer still looks like a distant dream, development in the field of computer science has
been known to leapfrog. A quantum computer, therefore, may become a reality in not so distant a
future.
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Relativistic theory of quantum fields is primarly written ina flat background, i.e. in absence of
gravity. This raises the obvious question that what would happen to this theory if the background
spacetime is curved. The answer to this question comes most easily from the principle of general
covariance which is a very efficient way to introduce the effects of gravitation into any theory of
Physics that can be written in a covariant language. In this work we shall apply the principle of
general covariance on Klein-Gordan equation and see what are the principle changes that come into
picture.

1. PRINCIPLE OF EQUIVALENCE

The principle of Equivalence rests on the equivalence between the inertial mass and gravitational
mass. In Principia, Sir Issac Newton distinguished betweenthese two kind of mass parameters by
their appearence in the respective laws. The mass parameterthat appears in the Newton’s second law
is known as the inertial mass and the mass parameter that appears in the force law of gravitation is
known as the gravitational mass. There is no reason to believe in any correspondence between these
two mass parameters. However precise experiments suggest that the ratio of these two parameters
does not differ from particle to particle by more than one part in a billion. Einstein took this equiv-
alence very strongly and this lead him to establish an equivalence between gravity and acceleration.
This is the key idea behind the “principle of equivalence”. Formally, this principle states that[1]

At every space-time pointxµ in an arbitrary gravitational field it is possible to
choose a locally inertial coordinate system (ξµ(xν)) such that, within a sufficiently
small region of the point in question, the laws of nature takethe same form as in unac-
celerated Cartesian coordinate systems in the absence of gravitation.
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Therefore in this small neighbourhood, we can write down theusual ‘flat spacetime laws of physics’
in terms of the coordinateξµ(xν) and then invert the coordinates to get the ‘generalised lawsof
physics’ in terms of the coordinatesxµ. By doing so the effects of gravitation are incorporated into
the laws.

In a flat background the invariant distance in spacetime is measuredvia the metric tensorηµν through
the equation:

ds2 = ηµνdx
µdxν . (1)

For generalised coordinates we use the metric tensorgµν instead ofηµν . This means that operations
such as contraction and raising and lowering of indices, will now require the use of metric tensor
gµν and its inversegµν . A second point that we notice here is that derivatives of vectors (and higher
rank tensor fields) do not transform as tensors under generalcoordinate transformation. Therefore
we introduce the notion of covariant derivatives which retains the tensor character of the equation
and pave a clean way of introducing gravity into the problem.Covariant derivative(denoted by a
semi-colon) of a contravariant tensor is given by:

Aµ
;ν = Aµ

,ν + Γµ
σνA

σ, (2)

and that of a covariant tensor is given by:

Aµ;ν = Aµ,ν − Γσ
µνAσ, (3)

where the comma denotes ordinary derivatives and theΓ’s are the affine connections that encode all
the information about gravity through the metric tensorgµν :

Γσ
µν =

1

2
gσρ(gρµ,ν + gρν,µ − gµν,ρ). (4)

This modification changes the calculus of vector fields, i.e.we need to generalize the concept of
divergence, curl, Laplacian, etc. It is to be noted that the derivatives of scalar functions or gradients
are ordinary vectors and therefore retain their form under the introduction of gravity, i.e. given a
scalar functionΦ(xµ),

Φ;µ ≡ Φ,µ. (5)

Covariant curl also remains unchanged because of the fact thatΓσ
µν is symmetric inµ andν:

Aµ;ν −Aν;µ = Aµ,ν −Aν,µ. (6)

Divergence of a vector field, however, changes in a non-trivial manner. The divergence of a vector
fieldAµ isAµ

;µ. From Eq.(2) we have

Aµ
;µ = Aµ

,µ + Γµ
µσA

σ. (7)
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We can simplifyΓµ
µσ using Eq.(4) to get:

Γµ
µσ =

1

2
gµρgρµ;σ (8)

If we now treat the metric tensor as a matrix then is equation can be further simplified using the
following identity from matrix algebra:

Tr

[

M−1(x)
∂

∂xλ
M(x)

]

=
∂

∂xλ
ln DetM(x), (9)

whereM(x) is an invertible square matrix with entries as functions ofxλ. Using this identity Eq.(8)
becomes:

Γµ
µσ =

1√
g

∂

∂xσ

√
g, (10)

whereg is the modulus of the metric tensorgµν . Plugging this into Eq.(7) we finally arrive at a
covariant form of the divergence:

Aµ
;µ =

1√
g

∂

∂xσ
(
√
gAσ) . (11)

The generalised Laplacian can be modified using the divergence. Laplacian of a scalar fieldΦ is
given byΦ,µ

,µ. When we covariantize this form it becomesΦ;µ
;µ. From Eq.(5) this simplifies to

Φ,µ
;µ. The first partial derivative ofΦ in this expression is an ordinary vector. Therefore we can

make use of Eq.(11) to simplify this expression further to get the covariant form of the Laplacian as:

Φ;µ
;µ =

1√
g

∂

∂xµ
(
√
ggµνΦ,ν) . (12)

We are now in position to correctly write down the Law of Physics in the presence of gravity. Take
the equation representing the Law and perform the followingchanges to it:

• Replace allηµν by gµν .

• Replace all ordinary derivatives by their covariant forms.

This recipe for introducing gravitation into the problem (which resulted from the equivalence prin-
ciple) is alternatively known as “Principle of General Covariance”. Formally, it states that a Law of
Physics holds in a general gravitational field if the following conditions are satisfied:

• The Law holds in the absence of gravitation.

• The Law has form invariance under general coordinate transformation (i.e. the law is express-
ible as a tensor equation.)

Having obtained this recepie we are now in a position to applythe principle of general covariance
to any physical theory written in flat spacetime. This principle finds application in mechanics and
electrodynamics[1]. Here we apply it to Klein Gordon equation.
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2. KLEIN GORDON EQUATION IN THE PRESENCE OF GRAVITATIONAL FIELD

A massive relativistic spin zero particle is adequately described by the Klien-Gordan equation which
reads:

(∂µ∂
µ −m2)Φ = 0, (13)

wherem is the mass of the field quanta in case the theory is quantized.Here we have used the
signature of the metric as− + ++ (if we use the reciprocal signature then sign of the mass term
will get simply reversed). A direct application of the principle of general covariance modifies this
equation to its covariant form as follows:

1√−g

∂

∂xµ

(√−ggµνΦ,ν

)
−m2Φ = 0, (14)

where the negative sign preceedingg is to ensure that the quantity inside the square root is positive.
This is the general wave equation for a massive scalar field “propagating freely” in a curved back-
ground. We can simplify this equation for different backgrounds. At this stage we have not assumed
anything about the strength of the gravitational field. The only assumption made here is that field
is specified by some external matter distribution and remains unaffected by the motion of the Klein
Gordon particle itself.

2.1. Klein Gordon equation from Action Principle

Action is a scalar quantity that has units of ‘Joules second’. Curved spacetime and flat spacetime
are related to each other by invertible coodinate transformations which form a subset of general
coordinate transformation. In the ensuing discussions we investigate the invariance of action under
general coordinate transformations.

In flat space (i.e. in the absence of gravity) action is simplythe 4-volume integral of the lagrangian
density.

S =

∫

Ld4x (15)

The Lagrangian densityL is a locally defined scalar field. Therefore it should remain invariant under
general coordinate transformation. The 4-volume element is however not a scalar under general
coordinate transformation. It is a scalar density of weight1. A scalar densitys is a quantity which
transforms as

s → s′ = |J |ws, (16)

whereJ is the Jacobian of the transformation andw is the weight of the scalar density. This
therefore destroyes the scalar property of the action. To remedy this we notice that the correct
volume element is now given by|J |d4x. Consequently, the action changes to
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S =

∫

L|J |d4x (17)

We can write this measure in terms of the determinant of the metric tensor. This is a more convenient
form particularly for minimising the action at a later stage. We notice that

d4x′ = |J |d4x, (18)

and

g′ = |J −∞|2 g, (19)

whereg is modulus of the determinant of the metric tensorgµν . This shows that that product
√
g d4x

is the correct invariant integral measure. Therefore the correct action in a curved space is

S =

∫

L√g d4x. (20)

All that remains now is to write down the correct form of the Lagrange densityL. To do this from
scratch we revert to the mathematical statement of the “equivalence principle” namely the “principle
of General Covariance”. Take the LagrangianL and perform the following changes to it:

• Replace allηµν by gµν .

• Replace all ordinary derivatives by covariant derivatives.

• If a tensor density appears in the Lagrangian, append the appropriate weight factor.

Having obtained this recepie we can now write the general action (20) for various physical systems
and investigate the effects of gravitation on it. Our concern is the Klein-Gordan field. We notice that
it can be derived from minimizing the following action:

S =

∫

d4xL =

∫ {
1

2
∂µΦ∂

µΦ− 1

2
m2Φ2

}

d4x. (21)

In a curved spacetime this action is modified in accordance tothe principle of general covariance
and we have

S =

∫ √−gd4xL =

∫ √−g

{
1

2
gµν∂

µΦ∂νΦ− 1

2
m2Φ2

}

d4x. (22)

Considering the background to be static(i.e. independent of the motion of the KG particle itself), we
vary this action with respect to the wavefunctionΨ to get the variation in the action:

δS =

∫ √−g
{
gµν∂

µΦ∂νδΦ−m2ΦδΦ
}
d4x. (23)

Integrating the first term by parts and throwing away the boundary term we get:

δS =

∫
(
∂ν(

√−ggµν∂
µΦ)−√−gm2Φ

)
δΦ d4x. (24)

This variation in the action should be zero for any varaitionδΦ. Therefore we set the integrand to
zero and we get back equation 14.
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3. SIMPLIFICATION OF THE WAVE EQUOATION IN A WEAK FIELD APPROXIMA-
TION

In the weak field approximation we introduce first order pertubations over the flat metric, i.e.

gµν ≃ ηµν + hµν (25)

where|hµν | ≪ 1. Therefore in the calculations that follow we ignore terms that are second and
higher order inhµν .

The determinantg of the metric tensor is

g= −(1 + h)

where h= ηµνhµν .

On using this approximation to simplify Eq.14 we get

∂µ∂µΦ−m2Φ +

{
1

2
∂µh ∂µΦ+ ∂µh

µν ∂νΦ + hµν ∂µ∂νΦ

}

= 0.

The terms inside the curly bracket is the correction arisingfrom the effects of gravity. It is to be
noted here that the raising and lowering of indices is now to be done with respect toηµν instead of
gµν . This is the scalar wave equation in linearised gravity. We will consider further simplification
of this equation in a particularly simple form of the metric tensor.

3.1. Wave equation in nearly newtonian spacetime

If the sources are weak then we can approximate the metric tensor (to the first order inφ) as

gµν = diag(−1− 2φ, 1− 2φ, 1− 2φ, 1− 2φ), (26)

where the monopole contribution toφ is

φ = −M

r
. (27)

Consequently, the pertubation over the flat metric is

hµν = −hµν = diag(−2φ,−2φ,−2φ,−2φ) (28)

and

h = ηµνhµν = −4φ. (29)

If we use these as inputs, then Eq(28) reduces to:

−(1 + 2φ)∂2
t Φ+ (1− 2φ)∇2Φ−m2Φ = 0. (30)
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This equation is appropriately weighted by factors that appear in the metric tensor. We notice that
this equation reduces to the Eq (13) in the limitφ → 0. We do not attempt to solve this equation
here but only mention that it exhibits a solution that is spherically symmetric and the radial part
is a Bessel’s type differential equation. The closed form ofthis differential equation is not known
however series solution of a more general equation1(although complicated) are available[2].

4. SUMMARY

We emphasize over here that the treatment done in this work issemi-classical in nature. It is appro-
priate for a senario where the general setting is that we treat matter particles quantum mechanically
and gravitational field classically. Such a theory is a preliminary attempt towards a more complete
theory of quantum gravity. Similar attempts have already been done earlier where electromagnetic
field is considered as a classical field interacting with quantized matter. Such semi-classical calcu-
lations yeilds results that are in agreement with the complete theory of quantum electrodynamics.
This gives us some hope that even though we do not have a full fleged theory of quantum gravity, we
certainly can predict few aspects, if not all, of the influence of gravitational field on quantum phe-
nomenon. In this paper we dealt with spin zero particles. However this formalism can be extended
to theories of higher spins.
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d2R(r)

dr2
+

(
1

r − rs
+

1

r

)
dR(r)

dr
+

(
E2r2

(r − rs)2
−

m2r

r − rs
−

l(l + 1)

r(r − rs)

)

R(r) = 0, (31)

wherers = 2M . Although closed form solutions to the radial equation are not yet known in Mathematical

Physics but there have been attempts to find a series solutionnear the critical points[2].
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Characterization of deterministically chaotic physical systems are of greater importance. Dynam-
ics of a system will reflect on the time dependence of certain easily measurable quantities. The
temporal development of such quantities is known as the timeseries. Time series analyses can
give greater insight into the dynamics of the system. In thispaper we report the characterization of
instabilities in discharge plasma by evaluating Lyapunov exponents from time series obtained.

1. INTRODUCTION

Nonlinear dynamics and chaos theory started with the intention of investigating the qualitative be-
havior of nonlinear problems which were difficult to solve analytically.

Phenomena which have no clear relation between cause and effect are said to possess random
element. Randomness is fundamental that gathering more information does not reduce randomness.
Randomness gathered in this way has come to be called chaos[1]. A chaotic system has a very
sensitive dependence on initial conditions. Chaos emergesfrom the theory of dynamical systems.

2. INSTABILIES IN DISCHARGE PLASMA

Discharge plasma is a typical nonlinear dynamical system with a large number of degrees of freedom
[2]. It is an interesting medium to test the universal characteristics of chaos. Non linear analysis of
gaseous discharge and plasma derive from their potential applications in the development of laser
devices, controlled fusion etc. where the problems of instabilities and turbulence are very important.
The study of chaotic behavior in gas discharge also enables one to understand the reproducibility of
the plasma conditions in laboratory plasma experiments, and their sensitive dependence on initial
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conditions. Even today a quantitative or an accepted qualitative explanation of the nonlinear be-
havior of dc discharge plasma has not been given. Though an exact description of the mechanism
responsible for the appearance of oscillatory behavior is not available, it is expected that the chaotic
behavior is generated from macroscopic properties of the discharge. These oscillatory behavior of
the discharge is a kind of self generated oscillations because the plasma system is not driven by any
external periodic forces. The fundamental frequency of self oscillations varies with the change in
the control parameters like discharge current.

The dynamics of a system will reflect on the time dependence ofcertain easily measurable quan-
tities. The temporal development of such quantities is known as time series.Time series analysis
reveals the characteristics of instabilities. A time series is a sequence of data points of an observed
variable at equally spaced time intervals and time series analysis comprises of methods that attempt
to understand such time series. Analyses enable one to understand the underlying context of the
data points like where did they came from and what generated them or to make predictions. In the
present study time series analysis is employed for the characterization of instabilities.

Cheung et.al.[1] described a qualitative representation of oscillatory phenomenon in dc discharge.
When an anode is biased positively with respect to the cathode, energetic electrons are ejected from
the cathode. The electrons periodically ionize the background neutral gas and create plasma between
the electrodes. The generation of primary electrons from the cathode and the production of plasma
are strongly coupled. The primary electrons ionize the gas and sustain the plasma while the plasma
reduces to negative space charge and facilitates electron emission. By varying the plasma discharge
parameters one can control this coupling or the feedback process and the resulting plasma dynamics
can be made unstable. This occurs when the plasma potential is negative with respect to the anode
where the potential is unstable and current oscillations occur.

The rate of plasma formation (determined by the rate of neutral ionizations by primary electrons
and the plasma decay time) can be written as

dn0

dt
= nρNn < σVρ > −n0

τ
(1)

whereno andNn are the density of the plasma electrons and the neutral atomsrespectively,nρ and
Vρ are the density and velocity of the primary electrons,σ is the ionization cross-section andτ is
the plasma decay time.Once a discharge is initiated the primary electron fluxJρ = nρVρ increases
rapidly and the entire voltage is confined in a narrow potential sheath that exists between the plasma
and the electrodes. The width of the sheath structure is typically of the order of tens of Debye length
λD. In the steady state primary electron fluxJρ ∝ λ−2

D and the efficiency of primary electrons
depends on how fast plasma ions can drift to form a potential sheath. An approximate rate equation
for the primary electron emission

dn0

dt
= σnρ(ud/L

′) (2)

whereσ is constant,ud is the ion drift speed andL′ is the effective plasma radius. The above
equation along with the angular discharge repetition frequency were well studied and have been
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shown to display chaotic behavior [2]. To maintain a stable sheath, the plasma ions have to enter the
sheath from the plasma side with a minimum of drift speedud ≥ cs, the ion acoustic speed. The
ratio of the ion flux to primary electron flux isJi/Jρ = (me/mi)

1/2 whereme/mi is the electron
to ion mass ratio. The maximum ion flux generated through ionization is approximately given by

[
Ji

Jρ
]ion = Nnσ

′

L =
L′

Im
(3)

whereIm is the mean free path. This ion flux must be large enough to neutralize the negative space
charge due to primary electrons and sustained sheath. As a result if L′/Im ≥ (me/mi)

1/2 both the
discharge current and the sheath are destabilized. The destabilizing process develops through the
accumulation of negative space charge and the depression ofthe plasma potential to negative values
forming a virtual cathode in the plasma. As a result, the effective energy of a primary electron is no
longer a constant, but depends on the spatial and temporal evolution of the plasma potential. This in
turn affects the mean free pathlm and the particle fluxJi/Jρ .In this unstable state inherent shot to
shot noise fluctuations ofδn/n ≤ 0.1% ,which make only a negligible change in the initial discharge
condition, cause a considerable change in the plasma and lead to chaotic behavior.

3. CHARACTERIZATION OF INSTABILITIES

Time series analyses can give greater insight into the dynamics of the system. Similar analyses have
been carried out in different systems involving nonlinearities. We describe one of the methods used
in time series analysis so as to study the dynamics of a non linear system, determination of Lyapanov
exponent.

One of the interesting nonlinear systems in the context of experimental investigations is gaseous
plasma. Discharge plasma possess a large number of degrees of freedom and is an interesting
medium to test some of the universal characteristics of chaos. For example, in the case of discharge
plasma one can monitor the discharge current to get a time series.

A discharge cell has been designed for the present study. In our observations, as we have changed
the discharge current for which different series of discharge instabilities were seen, with different
frequencies.

4. EXPERIMENTAL SET-UP

The schematic of the experimental set-up is given in figure1. The cell consists of a glass tube of1

cm diameter socketed into two metal caps made of stainless steel. Separation between the ends of the
caps is3 cm and they act as electrodes. One of the cylindrical cap is provided with a glass window
with O ring for effective sealing. The tube is provided with gas inlet and outlet ports. Desired gas
can be fed through a needle valve and the cell is operated as a continuous flow discharge cell by
connecting the outlet to a diffusion vacuum pump.
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Figure 1. Schematic of the experimental setup D− discharge cell, HV− high voltage

power supply, BR− high resistance, C− coupling capacitor, CRO− Digital Storage

Oscilloscope

Discharge was generated using a low noise high voltage powersupply (StanfordPS325). By
optimizing discharge current and pressure in the dischargecell instabilities were generated. The
instabilities developed across the load resistor was fed tothe Digital Storage Oscilloscope through
a coupling capicitor(0.1µ F). The capacitor blocks the dc voltage and ac signal is directly fed to the
oscilloscope.

To extract the relevant time series from the discharge, current was monitored using the digital
storage oscilloscope (AplabD36000A4 series) interfaced to a computer through its RS232 port.
Data were stored in the oscilloscope and digitized data was directly fed to the computer and saved.
The digitization of the data was carried out at suitable timeinterval. In this study the time series of
the pattern shown in fig.2 is considered.

5. LYAPUNOV EXPONENT − SIGNATURE OF CHAOS

For the nonlinear time series analysis it is of great interest to measure the Lyapunov characteristic
exponents which, if positive, are the most striking evidence for chaos. Many people had devised
different techniques and algorithms for the computation ofLyapunov exponents.

Lyapunov exponent of a given trajectory characterize the mean exponential rate of divergence of
trajectories surrounding it. It is a measure of sensitivityto initial conditions. A positive Lyapunov
exponent may be taken as a definition of chaos.

Here we take an algorithm to calculate maximal Lyapunov exponent proposed by HolgerKantz
[3]. The basic idea of this method is that the distance between the two trajectories typically increases
with a rate given by the maximal Lyapunov exponent. One looksfor a point of the time series which
is closest to its first point. This is considered as the beginning of a neighboring trajectory, given
by the consecutive delay vectors. Then computing the distance between these two trajectories in
time. When the distance exceeds some threshold, for this point of the time series a new trajectory
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Figure 2. instability pattern obtained

is searched for, when distance is as small as possible under the constraint that the new difference
vector points more or less into the same direction as the old one. The logarithms of the stretching
factors of the difference vectors are averaged in time to yield the maximal Lyapunov exponent.

In order to measure the maximal Lyapunov exponent we fixt, and search for all neighborsxi in-
side anǫ neighborhoodUt and compute the average of distance between all neighboringtrajectories
and the reference trajectoryxt as a function ofτ . τ is the relative time referring to the time index
of the starting point. To get rid of the fluctuations we take the logarithm of these average distances,
which yields the local effective Lyapunov exponent plus a fluctuation given by the angleφ . Now
this can be averaged int over the full length of the time series . The local angles are averaged out
and the effective exponents are averaged to the true can be done very fast and is given by

S(t) =
1

T

T∑

t=1

ln(
1

|Ut|
)

∑

i∈Ut

dist(x, x, τ) (4)

Initially the difference vectors in the phase space are pointing in any direction, therefore the distance
behaves like

dist =
∑

i

aiexp(λit) (5)

whereλi are the effective Lyapunov exponents in the stable and unstable directions. For an inter-
mediate range ofτ , S(τ) increases linearly with the slopeλ which is the estimate of the maximal
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Lyapunov exponent. This is the scaling range, where on the one handτ is large enough such that
nearly all distance vectors point into the unstable direction and on the other hand the correspond-
ing distancesdist(τ) are smaller than the size of the attractor. When they approach the size of the
attractor,S(τ) asymptotically tends towards a constant, since the distance cannot grow more.

Figure 3. plot of S(τ ) versus for the time series in figure

If the data are noisy, the typical distance between two nearby trajectories is of the order of the
noise level. If we chooseǫ smaller than the noise amplitude and if we find neighbors for this value,
S(τ) jumps from a value smaller thanlnǫ to a value given by the noise level atτ = 1. If this value
is not too large, one can still find a scaling range and the exponents thus found is not affected by the
noise.

The numerical value for the maximal Lyapunov exponent is theslope of the curveS(τ) in the
scaling region. Lyapunov exponent was calculated for some of the selected data. A typical plot
of S(τ) versusτ is given infig.3 .The slope of which is(0.09 ± 0.02). This small value of the
Lyapunov exponent shows that the dynamics is not in the chaotic regime, but only onset of chaos.

6. CONCLUSION

A discharge cell for instabilities study in discharge plasma has been designed and fabricated. Making
use of the discharge cell an experimental system has been optimized for the study. It has been found
that at an optimized pressure the discharge current decidesthe onset of randomness in the discharge.
Random signals generated were recorded using the digital storage oscilloscope. Lyapunov exponent
is a signature of chaos. In the present study Lyapunov exponent is found to be a positive quantity,
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indicating that there is an onset of chaos. One of the signalsgenerated was subjected to time series
analysis.
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Readers are invited to submit the solutions of the problems in this section within two months. Correct
solutions, along with the names of the senders, will be published in the alternate issues. Solutions

should be sent to: H.S. Mani, c/o A.M. Srivastava, Institute of Physics, Bhubaneswar, 751005;
e-mail: ajit@iopb.res.in

Communicated by H.S. Mani

1. We know that the parity operator̂P , is defined on the eigenstates|x > of the position operator
x̂, as

P̂ |x > = | − x >

.

From this we can show the eigenstates|p > of the momentum operator̂p transform as

P̂ |p > = | − p >

. Construct the parity operator in terms ofx̂, p̂, such that

P̂ x̂ ˆP−1 = −x̂

and

P̂ p̂ ˆP−1 = −p̂

Treat the problem, for simplicity, as one-dimensional.

(You need to introduce a constant of dimensions length, however the result will be independent
of the choice you make)

2. If an operatorÂ commutes with~J.n̂ and ~J.m̂, where ~J is the angular momentum operator
and n̂ and m̂ are two linearly independent vectors, show thatÂ commutes with all three
components of angular momentum,

[Â, ~J ] = 0
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Solutions to the problems given in Vol. 4 No. 3

Problem 1: Consider a hydrogen atom confined inside a thin uncharged conducting shell of radius
R. AssumeR >> aH , whereaH is the Bohr radius. The proton (assumed infitely heavy) is at the
centre of the shell.

Find the first nonvanishing correction to

(a) The radius of the hyderogen atom assuming Bohr quantization rule.

(b) The energy of the ground state.

Solution to Problem 1:

We use the method of images to solve the problem. If the elecron ( charge−e) is atr from the
proton, we have an image charge atR2/r of valueeR/r Thus we have, for the elctron,

mv2

r
=

e2

4πǫ0r2
− e2R/r

4πǫ0[R2/r − r]2

=
e2

4πǫ0
[
1

r2
− Rr

[R2 − r2]2
]

We also have

mvr = h̄

Herem, v refer to the electron’s mass and speed respectively.h̄ is the Planck’s constant devided by
2π as usual. Eliminatingv from the two eqations and simplifying we get

r =
aH

[1− r3

R3(1−(
a
H

R
)2)3

]

where

aH =
h̄24πǫ0
me2

To the lowest nonvanishing order we get

r = aH(1 + (
aH

R
)3)

The enrgy of the system is

E =
mv2

2
− e2

4πǫ
(
1

r
− R/r

R2/r
+

R/r

R2/r − r
)
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which can be simplified in a straight forward way leading to ( to the lowest nonvanishing order)

E = − e2

4πǫ0

1

2aH
(1 + 2(

aH

R
)3)

Problem 2: A square cardboard of lengthL is intially at x = 0 with its corners at
(0, 0, 0), (0, 0, L), (0, L, L) and(0, L, 0) and moves with a velocity~u = uî. Rain is coming verti-
cally down at constant velocity~w = −wk̂. If the number of drops per unit volume isN , find the
number of drops collected by the cardboard as it travels a distanceD.

Viewing the same from the cardboard’s rest frame (assume relativistic velocities), show that you
get the same result for the number of drops collected by the card board.

Solution to Problem 2:

From the figure, it is clear that all the raindrops in the volume (one side of the parallopiped not
shown and goes into the paper) ABCD×L will be collected by the cardboard as it travels a distance
D = AE. Thus the number of rain drops collected isDL2N

Figure 1.

If we view it from the cardboard’s rest frame the velocity of rain drop becomes

~w′ = −uî− w

γ
k̂

where

γ =
1

(1 − u2/c2)1/2

The time as seen from the cardboards frame is

T ′ = γ(T − uD

c2
) =

T

γ
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Volume of the rain collected ( depends only on the x-compnent!)is

T

γ
L2u =

L2D

γ

The density of rain drops due to Lorentz contraction isNγ and thus we get the same answer as
viewed from the cardboard’s frame,

=
L2D

γ
Nγ = L2DN

................................
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