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| TURNING POINTS |

A Brief Introduction to Quantum Computation

Dipan Kumar Ghosh
Physics Department, Indian Institute of Technology BomPayvai, Mumbai 400076

Communicated by: D.P. Roy

A brief introduction to the principle behind realizationafjuantum computer is presented. After
a review of some concepts Quantum Mechanics that are usetuiderstanding the working of a
guantum computer, we look at the various components aneépses that go into building a quantum
computer. A quantum algorithms for database search isiescrFinally, we discuss the criteria
for devising a practical quantum computer and the presatisof such a device. [1]

1. INTRODUCTION

One of the technological advances that had a profound irdien human progress during the last
century was the design of a digital computer. From the lichdbjective of providing a fast tool for
scientific computation with possible technological apgilcns in areas such as space science and
meteorology, computers have come to influence our day toiday through their use in diverse
areas, such as, business finance, communication techn(#smail, mobile telephony) , sound
and imaging (DVD players, video games) etc. At the core of¢happlications is the concept
of splitting individual chunk of information (data) intotbiwhich can be stored and manipulated
through electronic circuitry. The sequence according tlvthe bits are to be manipulated in order
to achieve the desired objective is known as an algorithrhirigkthe successful implementation of
every algorithm is the concept of a Turing machine, intralby the mathematician Alan Turing
[2], which consists of three basic elements, viz., (i) a tapesisting of cells each of which can
store one bit of information, (ii) a control unit, which hadirite number of states, including a halt
state to signify termination of computation and (iii) a readte head. Though this basic computer
is capable of storing and processing a limited amount ofrinédion at a time, it has, in principle
an unlimited amount of time in which to achieve its goal. Tke&ebrated Church- Turing thesis [3]
states that every computable function can be computedtigtfcby a finite number of steps of a
Turing machine.
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Ever since the first digital computer was invented, effastsnhaking faster and faster computers
which can store more and more memory have been made. Theemergf semiconductor devices
saw an exponential increase in both the processing speedemary, which were further enhanced
by the development of integrated circuits. The co-founddntel Corporation, Gordon Moore is
credited with predicting the pace of semiconductor techgwthrough “Moore’s law” which states
that the number of transistors and resistors on a chip dewery 18 months. Though Moore
corrected himself in 1975 and made the doubling period as@4ims instead of 18, a consequence
of the dense packing of components on a chip is that as thetiiration of computing devices
continues, macroscopic physics will no longer determirelthavior of the processors; they will
instead be determined by quantum laws. It is even conceviflalt a single electron may store
one bit of information. It may be remarked that though thegits/ of semiconductor devices on
which the present day processors are based can only beastdiflfy explained from a quantum
mechanical viewpoint, they are nquantumin the sense that information storage and processing
in such computers (which we shall designeli@ssical computejsare based on a macroscopic two
level systems.

Other than the fact that devising a computing machine whas#ing is based on microscopic
laws is an intellectually challenging task, a quantum corepuhas several advantages over a con-
ventional (classical) computer. The power of a quantum aders based on two properties of a
guantum state, viz., superposition and entanglement.aMhd state of a classical bit is determinis-
tic, i.e., itis either in the state O or in the state 1, a quamiit (called a qubit) can be simultaneously
in both the states. In general, a quantum system can be inesymsgition of different states at the
same time. Further, since these states evolve linearlytiritd, all the components of a superposed
state are processed simultaneously, giving an unprecadipatallelism which cannot be matched
by a classical computer.

In the theory of computation, the difficulty level of a prolvliés determined by the time an algo-
rithm takes to obtain a solution. For a given input sizé the time takenn(¢) does not exceed that
computed by a polynomial of degréei.e. if m(t) ~ O(n*), wherek is a constant, the problem
is said to beeasyand solvable in polynomial time whereaslifficult , exponential time algorithm
is one where the time taken (3(k") , wherek > 1. One of the important applications of this
property is that a quantum computer may be in a position teesoértain problems in polynomial
time which could not hitherto be solved by a classical akhponi An example of such a problem is
Shor’s factorization of a composite number [4].

The second property of a quantum state is that the statesoaditwore particles of a composite
system can be so entwined so that if any of the constituenicles is disturbed, the other con-
stituents are also influenced by it. The entanglement of dmstiuent particles persist even when
they are separated by space-like distances. This is in @appaolation of special theory of relativity
because when two objects are separated by space-likedtgeno information can reach either of
the bodies due to an event happening in the other body umifssnation can travel with a speed
greater than the speed of light in vacuum. This has been tkasmtspooky action at a distance” and
is of use in applications such as quantum teleportation yptagraphy. Feynmann [5] was the first
to point out that since the physical world is quantum meatensimulating laws of physics using
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a classical computer leads to an exponential slowing dowherprocessing speed of a computa-
tion. What exactly is the role of entanglement in increasiogputational speed has been a matter
of much debate and controversy. It has been suggested ghehauccess of Shor’s algorithm is
primarily due to the large entanglement of the quantum tegis

David Deutsch [7] generalized the Church-Turing thesistaldish what can be called a universal
guantum Turing machine. Though it was not able to simulagentlachine in all cases in polyno-
mial time, Deutsch’s algorithm was faster than the corradptg classical algorithm. Grover [8]
designed an algorithm which aims at searching for a padidtém from a database of entries. A
classical search algorithm requi@$N) searches whereas Grover’s algorithm achieves this task in
O(V/'N) steps. Even this quadratic speeding up can be of substaméiedst. For instance, consider
a database containing entries of the entire one billion fadimn of India. To search for a particular
entry in this database (the so called needle in the haystda@kprocessing speed of 1000 searches
per second would take 10 days of continuous processor timeeGalgorithm would complete this
task in about five minutes.

In this review we will introduce the readers to some of theseresting applications of quantum
computation. In Section 2 we will review some basic concepiguantum mechanics which will
be useful in understanding the working of a quantum compiteBection 3, we discuss Grover’s
search algorithm. In Section 4, we will comment on practiealization of a quantum computer.

2. PRELIMINARY CONCEPTS
2.1. Quantum Mechanics the Copenhagen interpretation

In this section we assume the familiarity of the reader witdergraduate level quantum mechanics.
We will highlight some salient features of what has come tkbewn as the Copenhagen inter-
pretation of quantum mechanics, primarily due to Niels Bblt contributed in good measure by
Heisenberg, Max Born, Dirac and many others.

In classical physics, the state of a system (which could berd®d by dynamical quantities such
as position, momentum etc.) is determined by its state afdieetime and through a deterministic
set of laws (e.g., Newton’s laws) by which the system evolvigls time. Thus if we know the state
of a system at the present time, we can, by solving the equafimotion, determine its system at
any time in the past or in the future. Further, the state ofistem is observer independent, i.e., a
state is intrinsic to the physical system and is not infludrmethe fact whether the state is being
observed or not. The accuracy of the measurement is onlteliniiy the accuracy of the measuring
apparatus which, in principle, can be made indefinitely esteu Quantum mechanics, however,
imposes a more fundamental limitation on the outcome of esoreanent.

While Heisenberg’s uncertainty principle and Bohr’s pijile of complementarity are essential
ingredients of the Copenhagen interpretation, here we aglynconcerned with an aspect of the
guantum postulates, known as tlvellapse of the wave functiorin quantum mechanics, the state
of a system is described by a state vector in a linear vecewesnown as the Hilbert space. The
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more familiar wave function is the projection of this vector to the position space. The state
vector evolves with time according to Schrodinger equmtido every physical observable, there
corresponds an operator which is Hermitian. This operattsr@n the state of the system changing
it to a new state. In general, a quantum system exists asa koperposition of component states,
the weight of a given component in the superposition beingnimas its amplitude. As long as a

state is left undisturbed, it evolves with time as per Sdiger equation. If, on the other hand, an
observation is made of a physical observable, it would aqdk” into one of the eigenstates of the
operator corresponding to the observable. While the aalgitate was a superposition of various
eigenstates of the operator, the probability with which dipalar eigenstate would be found as a
result of measurement is proportional to the square of thegliarde of the eigenstate in question

in the state immediately before measurement. Thus, unfikesituation in classical physics, a

measurement of a quantum system does not provide informakiout the state of the system, but
does so only about the state to which it has collapsed.

To illustrate the above, let us consider a quantum systerohwdan exist in one of the two states
0) and 1). These states could represent, for instance, the statéasfzation (vertical or horizontal)
of a photon or the spin projection of an electron (up or dowrthe ground state and the excited of
an atom. An arbitrary statey)) of the system is given byy)) = a | 0) + 5 | 1), wherea andg3
are the probability amplitudes of the stafe® and 1) respectively. If the state is normalized, the
probability sum demandsa |?> + | 3 |*>= 1. One can easily generalize the situation to the case
where the state vector is expressed imaromponent basis so that)) = Z?;ol «; | i) , where the
amplitudesy; satisfy the normalization constraipt, | «; |>= 1. As the system evolves, the state
will change with time but the normalization constraint hasdémain satisfied. Operators which can
act on the state vector while preserving the norm are knowmiary operators and will be denoted
by U. A quantum computer works with logic gates which consistrafary operations.

2.2. Reversibility

An advantage of working with unitary gates is that quantumoting is intrinsically reversible. A
gate is said to be reversible if it is possible to retrieveitipait from the output by simply reversing
the sequence of operations which yielded the output stawith the input. Gates used in classical
computation are, in general, not reversible. For instaaneAND gate is not reversible because,
given a 0 output, it is not possible to determine which of tive¢ pairs of input, viz., (0,0), (0,1) or
(1,0) had yielded this result. Thus the operation of the pateresulted in erasing one bit of infor-
mation. Landauer [9] had shown that each time a single bitefwry is erased, a minimum amount
kpIn2 of energy gets dissipated into the environment. This is knaw Landauer’s principle. If
one could carry out computation without erasing data, welevganerate less heat and hence have
a more energy friendly device. It is possible to design reitde gates and carry out computation
only using such gates. Charles Bennett [10], has shownttivailild be possible to make a classical
computer reversible by having it save all the informatioradniank tape it would otherwise throw
away. This would, however, increase the memory requiremigntomputer significantly.
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2.3. Qubits

The two level state described above can be used to define &uguait, known as qubit, as distinct
from a classical bit or &bit. For instance, in a classical computer, the voltage betweeplates
of a capacitor could represent a cbit, with a charged cagragipresenting the bit 1 while when the
same capacitor is discharged it could represent the cbihlikéJa classical bit which can be either
in the statg 0) or in the state 1) at a given time (i.e., either the capacitor is charged otdisged),
a qubit lies in a vector space parameterizethbgnd 8 which can take infinitely many complex
values. A qubit in superposition is in both of the states dritd@same time. These qubits form the
basic unit of quantum computing and quantum information.

One needs to understand this strange concepts of being istates at the same time. The
following experimental situation illustrates this contep

D2
NS

Figure 1. (a) A single photon is incident on a half silvered mirror. {lii)e photon
undergoes multiple reflections and transmission throughtinror arrangements.

D2

In figure (1a), a single photon is incident on a half silveradan. The photon is detected either
by the detector D1 or by the detector D2 with equal probabilit figure (1b), the photon first falls
on the half silvered mirror and can apparently take eitheréflected path or the transmitted path.
On both these paths a full silvered mirror is placed whicls asta reflector. A second half silvered
mirror allows the photon to reach either of the two detect@me would expect that the photon, in
this case will be detected either by D1 or by D2 with 50% pralitgibit is, however, found that the
photon is detected with 100% probability only by the dete€t® and never by D1. Clearly, in this
case the photon must have made up its mind to reach only D2.c&lni happen if photon has taken
both the paths and arrived at the second half silvered mioroombine constructively for D2 and
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destructively for D1. These paths must also have maintgih@de correlation to have been able to
interfere, i.e., photon must have been in a coherent supitigroof being in both the reflected beam
and the transmitted beam.

In order that qubits are useful in quantum computation, wedrte have states belonging to a
composite system. If the composite system consists of akigetated subsystems, the state of the
system is simply a direct product of the states of the carestis. One can then keep track of the
qubit of each subsystem. A two qubit statél) denotes the state of a system whose first particle
is in a state with qubit 0) and the second in the state with qubit) . A not so explicit but still
identifiable as two separate qubit state(ig+v/2)(] 00)+ | 01)) which is a product of the first
particle in the stat¢0) and the second in the state/v/2)(] 0)+ | 1)). If one considers interacting
systems, it may no longer be possible to factorize the statieis manner. When this happens, we
say that the qubits are entangled, a term apparently coin&ahxoddinger. The simplest example of
an entangled system is a singlet state arising from two sgifnplarticles. The state of this system
1/+/2(] 01)— | 10)) cannot be expressed as a product of the states belonging fadividual
particles. If one were to measure the state of the first padicd find that it has collapsed to a state
| 0) , the second particle would have instantaneously collapsétte state 1), no matter how far
removed it was from the first particle.

One can use these to generate quantum registers. For iastaBaubit quantum register con-
taining an equally superposition of states is represented b

_ L
VB

If such a state is measured, it would collapse to one of thetitaent states with a probability
1/8. It would not, however, be possible to infer from the fesfisuch a measurement what the
state of the system was before the measurement. For instémee obtained a state 000) as a
result of a measurement, it is as likely to have collapsenhfiiwe state of eqgn. (1) as from a state
(1/V8)(] 000) + /7 | 111)) .

An unitary operation which mixes the one qubit state is a eata gate, which acting on a state
| 0) gives a staté1/+/2)(] 0)+ | 1)) and acting on a stafel) gives(1/+v/2)(] 0)— | 1)). This gate
is useful in guantum computation because when each of thits of a statd 0,0, ..., 0) is passed
through a Hadamard gate, it produces an superposition pbaliblen-qubit states. A two qubit
state which is useful is known as a controlled-NOT gate (CFNi@ which one of the qubits acts as
the control while the other is the target. If the control bitri state| 0) it leaves the target unaltered
while when the control bit i$ 1) it flips the target bit. Consider what would happen if a two itjub
state| 00) is subjected to an operation depicted by the circuit of figlirdHere the first qubit is
passed through a Hadamard gate after which it acts as thetbitbf a C-NOT gate which acts on
the second bit as its target.

Note that when the control bit is 0 the target bit remains zdrereas when the control bit is 1, it
becomes 1 . As a result the final two bit state becofigs/2)(| 00)+ | 11)) which is an entangled
state.

The natural basis for measuring two qubit states consisbaf $tateg 00),| 01),| 10),| 11)

| ¥) [| 000)+ | 001)+ | 010)+ | 011)+ | 100)+ | 101)+ | 110)+ | 111)] (1)
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Figure 2. A combination of a Hadamard gate and a CNOT gate is used peoalic
entangled state.

which are known as computational basis. The states aretamgled. However, by taking a suitable
linear combination, one can define a different basis set. SDobk basis where the states of the two
particles are entangled is known as the Bell basis. The btgiss in this case are

or - L0011
P |00>\;§| 11)
o |01>:;§| 10)
. |01>\;§| 10) ?

2.4. Problem of Measurement

The principle of superposition, which gives a quantum cot@pan immense advantage over a
classical computer because of the former’s ability to pelrpfocess several states at a time, is also
a cause of some concern. At the termination of an algorithme, meeds to measure the desired
output. However, as the output is likely to be a componentaffgerposition, a measurement at the
end of the process will only provide the correct output witprabability. It is possible to design
algorithms such that the probability distribution at thel @fi the calculation is skewed in favour of
the desired component. It will then be possible to run therdtiygm repeatedly and get the correct
output from the results occurring most often.

It was mentioned that the quantum states are coherent sagigop of states. As long as such
states are acted upon by unitary operators, the coheretid®winaintained. To do so would require
that the qubits should be isolated from stray particles efghvironment. This, however, is not
practically feasible as the qubits must be sufficiently opieeast during the time of gate operations
so that they can be controlled and manipulated externalig decay and loss of phase coherence
when the qubits interact with the environment is knowrdasoherencewhich needs to be kept
under control

Student Journal of Physiscs Val. 4, No. 5, Oct. - Dec. 2012 179



There are a few problems for which quantum computers wodét afsubstantial speed up over
classical computers. Peter Shor’s algorithm [4] on primediazation of composite numbers is
one such problem. It may be remarked that a successful ingpigation of such an algorithm will
have far reaching consequence on cryptographic protoatglwiused for web transactions. The
RSA public key distribution [11] relies on the fact that whit is simple to multiply to large prime
numbers, the reverse problem, viz., factorization of adamgmposite number into its prime factors
cannot be achieved in polynomial time. Thus, if one couldisan efficient polynomial time
algorithm for factorization of a large composite numberethis known to be a factor of two large
prime numbers, it would effectively destroy the public keyptographic protocol which is widely
in use. A second algorithm which achieves a quadratic spgealier the corresponding classical
algorithms is Grover's [8] search algorithm. In the follogisection we discuss this algorithm in
some detail.

3. GROVER'SSEARCH ALGORITHM

Search algorithms are designed to locate an item having aediefiharacteristics from a database.
A database may be structured or unstructured. For instam@etelephone directory, the names
are alphabetically arranged but the associated telephaméers are randomly distributed. Such a
database is structured with respect to hames but unstegbivith respect to the telephone numbers.
Trying to find the name of a person from his telephone numioen such a database is like searching
for the proverbial “needle in the haystack !". One can foratelthis problem mathematically as
follows. Suppose we have a data baséof= 2" number of elements. We define a functjgh)
which is such that for all values @f(0 < k£ < 2™ — 1) the function takes the value zero except that
there exists a singlg, for which f(ky) = 1. If the database is random, one has to search through
the entire database, evaluate the functfdh)for each value of, until we find the value ok for
which the function evaluates to unity. To locate with a ptuility of half we requireN /2 number of
trials, and the definitive search can require exer 1 number of trials, for the extremely unlucky
case when the last item of the database happens to be the care vamking for. The number of
trials isO(NV). A structured database will obviously reduce the effort.

Grover [8] designed an algorithm for searching for an elenirem quantum computer, which
speeds up the search quadratically, i.e. instead of the euaflirials beingD (V) , it requires only
O(v/N) number of trials. Since we are working with a quantum compute assume that we have
N = 2™ number of states, each having the same amplitude. For sityplve will take these states
to form an orthonormal basis. With each item in our databas@sgociate one basis state. One of
these basis statesfisarked i.e. it has certain properties we are looking for. The atbar starts
with an initial state| s) = ﬁ Zf\;l | ) which is a linear combination of th& states in which

the amplitude of each of the basis states is the samel/.e/N . The search is accomplished by
selective amplification of the state corresponding to témito be found. Let us call our marked
state| w) . To start with the amplitude of the marked state is also etpilv/N .

Certain quantum operations have to be done on the stan@#ed $hese operations are executed
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by quantum circuits corresponding to the unitary operatdise first of Grover's operations is to
operate the standard state) with an operator which leaves all components sf other than that
along| w) unchanged while the sign of the component alprg is flipped. It is easy to visualize
this in a vector diagram shown in Fig. 3. The figure has beewnlia two dimensions in the plane
containing vector$ s) and| w) though the vectors s) and| w) are in theN dimensional vector
space. After the first rotation, the vector points in the ctimn indicated by s1). This is followed
by a second rotation which takés;) to | s2) which has the component ¢fs;) parallel to| s)
unchanged but flips its sign perpendicular to it. It can be $eat the angle betwegs) and| ss) is
260 towardsthe marked statpw).

Figure 3. A geometrical representation of Grover’s rotations. Afiae iteration the
angle between the initial and the final directions of makeragie26.

Consider the simplest case of N=4. Since the magnitude ¢f efithie components in are equal,
the cosine of the angle betweem) and| s) is 1/v/N . For N = 4, the angle i$0°. Thus after
one Grover iteration, the marked state is found with cetyaiRor a generalV, the same principle
is valid. Recall that for largeV, sinf ~ 6 = 1/v/N. The number of iteration required to align
the vectol s) with the marked statpw) is given by

n-20==
2

which gives
™ s
= —=~-—-VN
n=1%~7 VN A3)
showing the quadratic speeding up of the search algorithm.
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4. PRACTICAL RELIZATION OF A QUANTUM COMPUTER

Practical realization of a quantum computer is a challemgiroblem. Simply stated, a quantum
computer is a device which uses quantum states to encodmgsrand store information. In prin-
ciple ,any two level system, such as, a spin half particle tvalevel atomic system can be used
for preparing a qubit. However, in practice, a set of crédmown as DiVincenzo [12] criteria are
considered to be crucial for building a physical quantum potar. These criteria are summarized
in the following.

1. A scalable physical system with well characterized qubWe have seen that qubits are essen-
tially the workhorse of a quantum computer. We need themrfooding and storing of information.
As we need to manipulate the qubits externally, it is necgdseaclearly identify the states which
define qubits and their interaction with other states of §stesn, with states of other qubits and
with external fields. For instance, if we take a qubit to berdafias the two lowest lying states of
the system, the probability of transition to higher lyingtss should be negligible. A wide range
of physical systems can be used as qubits. These includadi@ar spins addressed through nu-
clear magnetic resonance, (ii) hyperfine or Zeeman subisl@velectronic ground states (iii) single
photon with polarization states (vertical and horizontapresenting the up and down states, (iv)
electron spins (v) flux qubits in superconducting Joseplsoctions etc.

2. Ability to initialize the state of the qubits to a simpledidal state such as : This is identical
to the requirement of initializing the registers in a claasicomputer. Registers would otherwise
contain “garbage” and the result of computation becomeustirorthy. In many applications such
initializations can be simply done by cooling the atoms tovatiemperature ensuring that the atoms
remain in their ground state. This may not, however, be adwmssible (e.g. in liquid state NMR)
in which case one can use a thermally populated state asitia¢ state.

3. Long decoherence times, much longer than the gate opetatie : Earlier in the article we
have commented on loss of coherence due to interaction @fubi¢s with environment. Decoher-
ence is important as it is the time required for a quanturesy$o interact with environment and go
over to a classical regime. After this. the system canndievas a quantum system. As the qubits
must be externally manipulated for logic gate operatiomsy thave to be exposed to environment
during such process. The decoherence time should, therdferong compared to gate operation
time. In many applications the decoherence times may besafrither of microseconds. As gates can
be implemented in as short a time as a pico-second, we chpesfiborm about a million operation
on the system before decoherence sets in. There has to bersolmeff between the need to expose
the qubit to the environment and decoherence that musttaidyiset in. Such non-controllable
errors are even known in classical computing. The idea otilh falerant computing is to retrieve
right information from a noisy channel through error cotireg codes. Current classical computers
can tolerate 0.01% error in data. Quantum computers stit dong way to go in this direction.

4. A “universal” set of quantum gates : Data manipulation soeputer (classical or quantum)
is done using logic gates. In quantum computers such gatelwamic unitary operators, which
acting on a quantum state would give rise to a new state. Asiomexd earlier, unlike classical gates,
the quantum gates are reversible. This implies that the eunfinput qubits is equal to the number
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of output qubits. Several one-qubit gates have been dekigiadamard gate, which acting on a
state| 0) gives a symmetric combination of the stafés and| 1) ,and, which acting on a statd )
gives the anti- symmetric combination of the same is widalgdiin quantum circuits. A sequence
of two Hadamard gates can be used to simulate a beam spkféctdd in Fig. 1. Yet another
one-qubit gate is the NOT gate. CNOT gate, described easlien example of a two-qubit gate.
There are gates with three input-output qubits as well. Wedi-known that in classical circuits,
the NAND gate is universal, i.e., any logic operation can bgmed using NAND gates alone.
Several universal family of quantum gates have been idedtifOne such family consists of the
Hadamard gate, the CNOT gate, the phase gate and/thgate, the last mentioned gate generates
a phase difference af/4 between the bits 0 and 1.

5. A qubit specific measurement capability : We have brieflyckeed upon the problems related
to measurement process. The measurement process depahdssgatem under consideration. In
most cases projective measurements are the most commauymethod to extract the output. In
some cases (e.g. in liquid state NMR computer) such measmtsrare not feasible and one makes
ensemble average measurements.

There are two more subsidiary criteria which must be sadisfithe quantum computers are to be
networked. We will not go into these additional criteria.

At present experimental realization of a practical quantamputing device are based on the
following techniques :

() NMR in both liquid and solid states
(i) Coupled atoms and photon in an optical cavity, the sitedacavity-QED
(iif) Trapped neutral atoms or ions
(iv) Semiconducting quantum dots
(v) Superconducting Josephson junctions
(vi) Photonic circuits.

Shor’s factorization algorithm has been successfully en@nted on a seven qubit NMR machine
while the same has been implemented with five qubits on a plothip. While a full-fledged
guantum computer still looks like a distant dream, develepnin the field of computer science has
been known to leapfrog. A quantum computer, therefore, neempime a reality in not so distant a
future.
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Relativistic theory of quantum fields is primarly writtenanflat background, i.e. in absence of
gravity. This raises the obvious question that what wouldpea to this theory if the background
spacetime is curved. The answer to this question comes ras#y érom the principle of general
covariance which is a very efficient way to introduce the @8eof gravitation into any theory of
Physics that can be written in a covariant language. In tluigkwve shall apply the principle of
general covariance on Klein-Gordan equation and see whahamprinciple changes that come into
picture.

1. PRINCIPLE OF EQUIVALENCE

The principle of Equivalence rests on the equivalence batvibe inertial mass and gravitational
mass. In Principia, Sir Issac Newton distinguished betwhese two kind of mass parameters by
their appearence in the respective laws. The mass paratingteppears in the Newton’s second law
is known as the inertial mass and the mass parameter thaamagdpehe force law of gravitation is
known as the gravitational mass. There is no reason to ledlieany correspondence between these
two mass parameters. However precise experiments su¢pgeshé ratio of these two parameters
does not differ from particle to particle by more than one paa billion. Einstein took this equiv-
alence very strongly and this lead him to establish an etprica between gravity and acceleration.
This is the key idea behind the “principle of equivalencadrRally, this principle states that[1]

At every space-time point* in an arbitrary gravitational field it is possible to
choose a locally inertial coordinate systeg# (z”)) such that, within a sufficiently
small region of the point in question, the laws of nature thleesame form as in unac-
celerated Cartesian coordinate systems in the absencawitagion.

*himanshuraj31@niser.ac.in
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Therefore in this small neighbourhood, we can write dowruhgal ‘flat spacetime laws of physics’
in terms of the coordinaté”(z”) and then invert the coordinates to get the ‘generalised tafws
physics’ in terms of the coordinate$. By doing so the effects of gravitation are incorporated int
the laws.

In a flat background the invariant distance in spacetime esmed/iathe metric tensor,,,, through
the equation:

ds® = Nuvdzt dz”. 1)

For generalised coordinates we use the metric teg)somstead ofy,,,.. This means that operations
such as contraction and raising and lowering of indiced, malv require the use of metric tensor
g, @nd its inversg*”. A second point that we notice here is that derivatives ofarsqand higher
rank tensor fields) do not transform as tensors under geoesatlinate transformation. Therefore
we introduce the notion of covariant derivatives which irtahe tensor character of the equation
and pave a clean way of introducing gravity into the problédovariant derivative(denoted by a
semi-colon) of a contravariant tensor is given by:

Ar o A vt FgVAUa (2)
and that of a covariant tensor is given by:
A,u;u - A,u,u - FZVAa’a (3)

where the comma denotes ordinary derivatives and'thare the affine connections that encode all
the information about gravity through the metric tenggy:

g 1 g,
I = 29 P(Gonw + Govu = Guv,p)- 4

This modification changes the calculus of vector fields, ie. need to generalize the concept of
divergence, curl, Laplacian, etc. Itis to be noted that thiévdtives of scalar functions or gradients
are ordinary vectors and therefore retain their form unberintroduction of gravity, i.e. given a
scalar functionb(z*),

e,=0,. (5)
Covariant curl also remains unchanged because of the fadi f) is symmetric inu andv:
Ay — A=A — Av (6)

Divergence of a vector field, however, changes in a nonafrivianner. The divergence of a vector
field A* is A% . From Eq.(2) we have

Al = AP, 4 TH A, 7)
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We can simplifyl'}j , using Eq.(4) to get:

1
Fﬁa = §gupgpu;a (8)

If we now treat the metric tensor as a matrix then is equatamhme further simplified using the
following identity from matrix algebra:
Tr M_l(x)iM(x) 9 In Det M (x) 9
OxA - Oz ’
whereM (z) is an invertible square matrix with entries as functions-f Using this identity Eq.(8)
becomes:

1 9
l—w - 10
no \/g 8170 \/ga ( )
whereyg is the modulus of the metric tensgy,,. Plugging this into Eq.(7) we finally arrive at a
covariant form of the divergence:

0 (o
s (VGA?). (1)

wo_ L
H \/§
The generalised Laplacian can be modified using the divesgebaplacian of a scalar field is
given by @ . When we covariantize this form it becomeg; . From Eq.(5) this simplifies to
@+ . The first partial derivative o in this expression is an ordinary vector. Therefore we can
make use of Eq.(11) to simplify this expression further totge covariant form of the Laplacian as:

o L
/g Oxr
We are now in position to correctly write down the Law of Plegsin the presence of gravity. Take
the equation representing the Law and perform the followimanges to it:

(V99" @) - (12)

e Replace alb),, by g,...
e Replace all ordinary derivatives by their covariant forms.

This recipe for introducing gravitation into the problemhjeh resulted from the equivalence prin-
ciple) is alternatively known as “Principle of General Comace”. Formally, it states that a Law of
Physics holds in a general gravitational field if the follogriconditions are satisfied:

e The Law holds in the absence of gravitation.

e The Law has form invariance under general coordinate toamedtion (i.e. the law is express-
ible as a tensor equation.)

Having obtained this recepie we are now in a position to afipyprinciple of general covariance
to any physical theory written in flat spacetime. This pnaheifinds application in mechanics and
electrodynamics[1]. Here we apply it to Klein Gordon eqoati
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2. KLEIN GORDON EQUATION IN THE PRESENCE OF GRAVITATIONAL FIELD

A massive relativistic spin zero particle is adequatelydeed by the Klien-Gordan equation which
reads:

(8,0" —m*)® =0, (13)

wherem is the mass of the field quanta in case the theory is quanitieee.we have used the
signature of the metric as + ++ (if we use the reciprocal signature then sign of the mass term
will get simply reversed). A direct application of the priple of general covariance modifies this
equation to its covariant form as follows:

BN
/—g Ozt

where the negative sign preceedin to ensure that the quantity inside the square root isipesit
This is the general wave equation for a massive scalar fielopgmating freely” in a curved back-
ground. We can simplify this equation for different backgnds. At this stage we have not assumed
anything about the strength of the gravitational field. Théy@ssumption made here is that field
is specified by some external matter distribution and remaiaffected by the motion of the Klein
Gordon patrticle itself.

(V=gg"®,) —m*® =0, (14)

2.1. Klein Gordon equation from Action Principle

Action is a scalar quantity that has units of ‘Joules seco@lirved spacetime and flat spacetime
are related to each other by invertible coodinate transiitions which form a subset of general
coordinate transformation. In the ensuing discussionsmestigate the invariance of action under
general coordinate transformations.

In flat space (i.e. in the absence of gravity) action is sintipdy4-volume integral of the lagrangian
density.

S= / Ld*x (15)

The Lagrangian densit§ is a locally defined scalar field. Therefore it should remauariant under
general coordinate transformation. The 4-volume elemeiioivever not a scalar under general
coordinate transformation. It is a scalar density of weighf scalar density is a quantity which
transforms as

s— s =|T|"s, (16)

where J is the Jacobian of the transformation amdis the weight of the scalar density. This
therefore destroyes the scalar property of the action. Twedy this we notice that the correct
volume element is now given By’ |d*x. Consequently, the action changes to
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S= /£|j|d4x (17)

We can write this measure in terms of the determinant of thieicrtensor. This is a more convenient
form particularly for minimising the action at a later stayjée notice that

d*z’ = |TJ|d*x, (18)
and
g =1T">¢, (19)

whereg is modulus of the determinant of the metric tenggr. This shows that that produgfy dx
is the correct invariant integral measure. Therefore thieecbaction in a curved space is

S= / £ d*x. (20)

All that remains now is to write down the correct form of thegkange density. To do this from
scratch we revert to the mathematical statement of the Vatgrice principle” namely the “principle
of General Covariance”. Take the Lagrangiaand perform the following changes to it:

¢ Replace alb,, by g,....
e Replace all ordinary derivatives by covariant derivatives

o If a tensor density appears in the Lagrangian, append th@ppate weight factor.

Having obtained this recepie we can now write the generam¢20) for various physical systems
and investigate the effects of gravitation on it. Our conésthe Klein-Gordan field. We notice that
it can be derived from minimizing the following action:

S = /d4X£ = / {%@L@@“fb — %m2<1>2} d*x. (22)

In a curved spacetime this action is modified in accordandkerinciple of general covariance
and we have

S = /\/_—gd‘lxﬁ = /\/_—g {%g,wa“@a”@ — %mzqﬂ} d*x. (22)

Considering the background to be static(i.e. independaheanotion of the KG particle itself), we
vary this action with respect to the wavefuncti@ro get the variation in the action:

58S = / V=8 {guw0"®9"6® — m*®d} d’x. (23)
Integrating the first term by parts and throwing away the lolauy term we get:
5S = / (0" (V=8gu0"®) — /—gm>®) 6® d*x. (24)

This variation in the action should be zero for any varaitidn Therefore we set the integrand to
zero and we get back equation 14.
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3. SIMPLIFICATION OF THE WAVE EQUOATION IN A WEAK FIELD APPROXIMA-
TION

In the weak field approximation we introduce first order peations over the flat metric, i.e.
guu ~ n;n/ + hul/ (25)

where|h*”| <« 1. Therefore in the calculations that follow we ignore termattare second and
higher order ir,,,.
The determinang of the metric tensor is

g=—(1+nh)
where h=n""h,,,.

On using this approximation to simplify Eq.14 we get
019, ® — m*® + {%@Lh oM® + 9,h"™ 9,® + b a,ta,,@} =0.

The terms inside the curly bracket is the correction arigiogn the effects of gravity. It is to be
noted here that the raising and lowering of indices is nowetddne with respect tg,,, instead of

guv- This is the scalar wave equation in linearised gravity. Vileaonsider further simplification

of this equation in a particularly simple form of the meteasor.

3.1. Wave equation in nearly newtonian spacetime

If the sources are weak then we can approximate the metsotéto the first order ip) as

Guv = dlaq_l - 2¢a 1- 2¢7 1- 2¢a 1- 2¢)7 (26)
where the monopole contribution #ois

p=-2 27)

r
Consequently, the pertubation over the flat metric is

hyw = —h* = diag(—2¢, —2¢, —2¢, —2¢) (28)
and

h =n"hy, = —4¢. (29)

If we use these as inputs, then Eq(28) reduces to:

—(142¢)07® + (1 — 2¢)V*® — m?® = 0. (30)
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This equation is appropriately weighted by factors thatesppn the metric tensor. We notice that
this equation reduces to the Eq (13) in the limit—~ 0. We do not attempt to solve this equation
here but only mention that it exhibits a solution that is spiadly symmetric and the radial part

is a Bessel's type differential equation. The closed fornthig differential equation is not known

however series solution of a more general equagathough complicated) are available[2].

4. SUMMARY

We emphasize over here that the treatment done in this weens-classical in nature. It is appro-
priate for a senario where the general setting is that wé tnaéter particles quantum mechanically
and gravitational field classically. Such a theory is a prglary attempt towards a more complete
theory of quantum gravity. Similar attempts have alreadynb@one earlier where electromagnetic
field is considered as a classical field interacting with dizad matter. Such semi-classical calcu-
lations yeilds results that are in agreement with the cotegleeory of quantum electrodynamics.
This gives us some hope that even though we do not have a fidiftgneory of quantum gravity, we
certainly can predict few aspects, if not all, of the influemd gravitational field on quantum phe-
nomenon. In this paper we dealt with spin zero particles. él@wthis formalism can be extended
to theories of higher spins.
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d?R(r) N ( L 1) dR(r) N (( E*®  mPr (I+1)
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Characterization of deterministically chaotic physigaltems are of greater importance. Dynam-
ics of a system will reflect on the time dependence of certasilye measurable quantities. The
temporal development of such quantities is known as the serees. Time series analyses can
give greater insight into the dynamics of the system. Inplaiger we report the characterization of
instabilities in discharge plasma by evaluating Lyapunqoments from time series obtained.

1. INTRODUCTION

Nonlinear dynamics and chaos theory started with the ifterdf investigating the qualitative be-
havior of nonlinear problems which were difficult to solveapically.

Phenomena which have no clear relation between cause aaal afe said to possess random
element. Randomness is fundamental that gathering mamanation does not reduce randomness.
Randomness gathered in this way has come to be called chad@s[dhaotic system has a very
sensitive dependence on initial conditions. Chaos emédrgesthe theory of dynamical systems.

2. INSTABILIESIN DISCHARGE PLASMA

Discharge plasma is a typical nonlinear dynamical systettmaiarge number of degrees of freedom
[2]. Itis an interesting medium to test the universal chemastics of chaos. Non linear analysis of
gaseous discharge and plasma derive from their potentiications in the development of laser
devices, controlled fusion etc. where the problems of bilties and turbulence are very important.
The study of chaotic behavior in gas discharge also enabkesoounderstand the reproducibility of
the plasma conditions in laboratory plasma experiments their sensitive dependence on initial
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conditions. Even today a quantitative or an accepted gkt explanation of the nonlinear be-
havior of dc discharge plasma has not been given. Thoughaat description of the mechanism
responsible for the appearance of oscillatory behaviooigwuailable, it is expected that the chaotic
behavior is generated from macroscopic properties of thehdirge. These oscillatory behavior of
the discharge is a kind of self generated oscillations beethe plasma system is not driven by any
external periodic forces. The fundamental frequency dfas&tillations varies with the change in
the control parameters like discharge current.

The dynamics of a system will reflect on the time dependencethin easily measurable quan-
tities. The temporal development of such quantities is kmaw time series.Time series analysis
reveals the characteristics of instabilities. A time sergea sequence of data points of an observed
variable at equally spaced time intervals and time serialy/ais comprises of methods that attempt
to understand such time series. Analyses enable one tostaddrthe underlying context of the
data points like where did they came from and what generatsd br to make predictions. In the
present study time series analysis is employed for the cteiaation of instabilities.

Cheung et.al.[1] described a qualitative representatioscillatory phenomenonin dc discharge.
When an anode is biased positively with respect to the cathertergetic electrons are ejected from
the cathode. The electrons periodically ionize the baakgadmeutral gas and create plasma between
the electrodes. The generation of primary electrons frarctthode and the production of plasma
are strongly coupled. The primary electrons ionize the gassaistain the plasma while the plasma
reduces to negative space charge and facilitates eleatiimsien. By varying the plasma discharge
parameters one can control this coupling or the feedbadaegmand the resulting plasma dynamics
can be made unstable. This occurs when the plasma potentiagative with respect to the anode
where the potential is unstable and current oscillatiosioc

The rate of plasma formation (determined by the rate of a¢ignizations by primary electrons
and the plasma decay time) can be written as

% =n,N, <oV, > —% (1)
wheren, andN,, are the density of the plasma electrons and the neutral a&spsctivelyn, and
V, are the density and velocity of the primary electranss the ionization cross-section amds
the plasma decay time.Once a discharge is initiated theapyiglectron fluxJ, = n,V, increases
rapidly and the entire voltage is confined in a narrow posstieath that exists between the plasma
and the electrodes. The width of the sheath structure isajigiof the order of tens of Debye length
Ap. In the steady state primary electron flux o /\,52 and the efficiency of primary electrons
depends on how fast plasma ions can drift to form a poterteadth. An approximate rate equation
for the primary electron emission

dno

= = ony(ua/L') )

whereo is constantyy is the ion drift speed and/ is the effective plasma radius. The above
equation along with the angular discharge repetition femqy were well studied and have been
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shown to display chaotic behavior [2]. To maintain a stahksagh, the plasma ions have to enter the
sheath from the plasma side with a minimum of drift spegd> ¢, the ion acoustic speed. The
ratio of the ion flux to primary electron flux i§;/J, = (me/mi)l/Q wherem,. /m; is the electron

to ion mass ratio. The maximum ion flux generated througteation is approximately given by

J; r

— . — / —_
7, ]wn Nyoy, I, (3)

[

wherel,, is the mean free path. This ion flux must be large enough ta@lead the negative space
charge due to primary electrons and sustained sheath. Asithifel’ /T, > (me/mi)l/g both the
discharge current and the sheath are destabilized. Thabileshg process develops through the
accumulation of negative space charge and the depressibe pfasma potential to negative values
forming a virtual cathode in the plasma. As a result, theotiffe energy of a primary electron is no
longer a constant, but depends on the spatial and tempadlakien of the plasma potential. Thisin
turn affects the mean free palth and the particle flux/; /J, .In this unstable state inherent shot to
shot noise fluctuations @f, /n < 0.1% ,which make only a negligible change in the initial disctearg
condition, cause a considerable change in the plasma amtbehaotic behavior.

3. CHARACTERIZATION OF INSTABILITIES

Time series analyses can give greater insight into the digsamfithe system. Similar analyses have
been carried out in different systems involving nonlingéasi We describe one of the methods used
in time series analysis so as to study the dynamics of a nearsystem, determination of Lyapanov
exponent.

One of the interesting nonlinear systems in the context péamental investigations is gaseous
plasma. Discharge plasma possess a large number of dedrébeedpm and is an interesting
medium to test some of the universal characteristics of &haor example, in the case of discharge
plasma one can monitor the discharge current to get a tinesser

A discharge cell has been designed for the present studyrlobservations, as we have changed
the discharge current for which different series of disgkanstabilities were seen, with different
frequencies.

4. EXPERIMENTAL SET-UP

The schematic of the experimental set-up is given in figur€he cell consists of a glass tubelof
cm diameter socketed into two metal caps made of stainlesk Separation between the ends of the
caps is3 cm and they act as electrodes. One of the cylindrical capoigighed with a glass window
with O ring for effective sealing. The tube is provided withsgnlet and outlet ports. Desired gas
can be fed through a needle valve and the cell is operated astawous flow discharge cell by
connecting the outlet to a diffusion vacuum pump.
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Figure 1. Schematic of the experimental setup-@lischarge cell, HV high voltage
power supply, BR- high resistance, € coupling capacitor, CRO Digital Storage
Oscilloscope

Discharge was generated using a low noise high voltage psweply (StanfordP5325). By
optimizing discharge current and pressure in the discheefjdénstabilities were generated. The
instabilities developed across the load resistor was febdddigital Storage Oscilloscope through
a coupling capicitof{.1x F). The capacitor blocks the dc voltage and ac signal is tijréed to the
oscilloscope.

To extract the relevant time series from the discharge eoctinvas monitored using the digital
storage oscilloscope (Aplab36000A4 series) interfaced to a computer through its B3 port.
Data were stored in the oscilloscope and digitized data wastty fed to the computer and saved.
The digitization of the data was carried out at suitable timterval. In this study the time series of
the pattern shown in fig.2 is considered.

5. LYAPUNOV EXPONENT — SIGNATURE OF CHAOS

For the nonlinear time series analysis it is of great intei@sneasure the Lyapunov characteristic
exponents which, if positive, are the most striking evidefar chaos. Many people had devised
different techniques and algorithms for the computatiobyafpunov exponents.

Lyapunov exponent of a given trajectory characterize thamexponential rate of divergence of
trajectories surrounding it. It is a measure of sensititatynitial conditions. A positive Lyapunov
exponent may be taken as a definition of chaos.

Here we take an algorithm to calculate maximal Lyapunov egpo proposed by HolgerKantz
[3]. The basic idea of this method is that the distance batwleetwo trajectories typically increases
with a rate given by the maximal Lyapunov exponent. One Idoka point of the time series which
is closest to its first point. This is considered as the begmof a neighboring trajectory, given
by the consecutive delay vectors. Then computing the distiietween these two trajectories in
time. When the distance exceeds some threshold, for thig pbthe time series a new trajectory
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Figure 2. instability pattern obtained

is searched for, when distance is as small as possible une@onstraint that the new difference
vector points more or less into the same direction as the mdd @he logarithms of the stretching
factors of the difference vectors are averaged in time tld ylee maximal Lyapunov exponent.

In order to measure the maximal Lyapunov exponent wé, fand search for all neighboss in-
side are neighborhood/; and compute the average of distance between all neighbiaijegtories
and the reference trajectory as a function of- . 7 is the relative time referring to the time index
of the starting point. To get rid of the fluctuations we take lilgarithm of these average distances,
which yields the local effective Lyapunov exponent plus atflation given by the angl¢ . Now
this can be averaged tnover the full length of the time series . The local angles amraged out
and the effective exponents are averaged to the true canneeveoy fast and is given by

T
S(t) = %;ln(ﬁ) S dist(z, 7, 7) )

1€Uy

Initially the difference vectors in the phase space aretpajrin any direction, therefore the distance
behaves like

dist = Z aexp(A\it) (5)

where)\; are the effective Lyapunov exponents in the stable and bilesthrections. For an inter-
mediate range of , S(7) increases linearly with the slopewhich is the estimate of the maximal
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Lyapunov exponent. This is the scaling range, where on tleehamdr is large enough such that
nearly all distance vectors point into the unstable dioectind on the other hand the correspond-

ing distanceslist(7) are smaller than the size of the attractor. When they appritecsize of the
attractor,S(7) asymptotically tends towards a constant, since the disteasnot grow more.
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Figure 3. plot of S(7) versus for the time series in figure

If the data are noisy, the typical distance between two netdjectories is of the order of the
noise level. If we choosesmaller than the noise amplitude and if we find neighborsHisrtalue,
S(7) jumps from a value smaller thdne to a value given by the noise levelat= 1. If this value
is not too large, one can still find a scaling range and the mepts thus found is not affected by the
noise.

The numerical value for the maximal Lyapunov exponent isslope of the curveS(r) in the
scaling region. Lyapunov exponent was calculated for sofrtbeoselected data. A typical plot
of S(7) versusr is given in fig.3 .The slope of which ig0.09 + 0.02). This small value of the
Lyapunov exponent shows that the dynamics is not in the aheeglime, but only onset of chaos.

6. CONCLUSION

A discharge cell for instabilities study in discharge plagmas been designed and fabricated. Making
use of the discharge cell an experimental system has bemniogd for the study. It has been found
that at an optimized pressure the discharge current deitidemset of randomness in the discharge.
Random signals generated were recorded using the digitalge oscilloscope. Lyapunov exponent
is a signature of chaos. In the present study Lyapunov exgasnéound to be a positive quantity,
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indicating that there is an onset of chaos. One of the sigraisrated was subjected to time series
analysis.
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Readersareinvited to submit the sol utions of the problemsin this section within two months. Correct
solutions, along with the names of the senders, will be published in the alternate issues. Solutions
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e-mail: ajit@iopb.res.in

Communicated by H.S. Mani

1. We know that the parity operatér, is defined on the eigenstates> of the position operator
z, as

Pl >=|—z>

From this we can show the eigenstafies- of the momentum operatgrtransform as
Pp>=|-p>
. Construct the parity operator in termsifp, such that
PiP—l = —&
and
PppP-1 = —p
Treat the problem, for simplicity, as one-dimensional.

(You need to introduce a constant of dimensions length, kemnthe result will be independent
of the choice you make)

2. If an operatordA commutes with/.7 and J.rh, where.J is the angular momentum operator
and 7 and s are two linearly independent vectors, show thatommutes with all three
components of angular momentum,

—

[A,J] =0

200



Problemsin Physics

Solutionsto the problems given in Vol. 4 No. 3

Problem 1: Consider a hydrogen atom confined inside a thin unchargedumimg shell of radius
R. AssumeR >> ay, whereay is the Bohr radius. The proton (assumed infitely heavy) ibat t
centre of the shell.

Find the first nonvanishing correction to

(a) The radius of the hyderogen atom assuming Bohr quaiatizatle.
(b) The energy of the ground state.

Solution to Problem 1:
We use the method of images to solve the problem. If the ateCoarge—e) is atr from the
proton, we have an image chargel&tt/r of valuee R/ Thus we have, for the elctron,

mv? €2 e?R/r
r dmegr?  4Ameg|R2/r —r]2
e 1 Rr

- 4d7eq [r_2 B [R? — T2]2]
We also have
mur = h

Herem, v refer to the electron’s mass and speed respectiveythe Planck’s constant devided by
27 as usual. Eliminating from the two eqgations and simplifying we get

ag
r= 3
1= wa=er)
where
h24me
ag = 3
me

To the lowest nonvanishing order we get

r=an(l+ ()%

The enrgy of the system is

mv? e 1 R/r R/r )
2 dwe'r R%Z/r  R2/r—r
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which can be simplified in a straight forward way leading to {tte lowest nonvanishing order)

e 1 ag

E=— —(1+2(=)3

47T602(LH( + ( R) )
Problem 2: A square cardboard of lengtl is intially at x = 0 with its corners at
(0,0,0), (0,0, L), (0, L, L) and(0, L, 0) and moves with a velocity = u:. Rain is coming verti-
cally down at constant velocity = —wk. If the number of drops per unit volume 1¢ , find the

number of drops collected by the cardboard as it travelstamtieD.
Viewing the same from the cardboard’s rest frame (assuragvistic velocities), show that you
get the same result for the number of drops collected by theelmzard.

Solution to Problem 2:

From the figure, it is clear that all the raindrops in the votugone side of the parallopiped not
shown and goes into the paper) AB&D will be collected by the cardboard as it travels a distance
D = AE. Thus the number of rain drops collectedid.? N

Z

Figure 1.

If we view it from the cardboard’s rest frame the velocity aiirr drop becomes

- N w ~
w = —ui — —k
Y

where

1
v= (1 _ u2/02)1/2

The time as seen from the cardboards frame is
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Volume of the rain collected ( depends only on the x-compijisnt

T L?D
“L*u=
Y Y

The density of rain drops due to Lorentz contractiorivis and thus we get the same answer as
viewed from the cardboard’s frame,
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