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Editorial

Soft Power and Indian Science

It is distressing to note that none of the Indian universities and higher teaching Insti-
tutions like ITTs and ISERs etc. figure in the list of 200 universities in the latest (2012) QS
World University Rankings. Many Asian countries have qualified for the distinction with
seven universities of China occupying the positions 44, 48, 89, 125, 168, 170 and 186; and
even Malaysia and Saudi Arabia capturing the spots 156 and 197 respectively. Anguish
has been expressed over this by many distinguished citizens in various fora, the most con-
spicuous being the public lament by the President of India in his convocation address at
the Utkal University, Bhubaneswar in last April. It becomes all the more intriguing and
poignant when one is reminded of the glorious heritage of India, with one of the earliest
civilization of the world of about 5000 years old, credited with gigantic contribution to vari-
ous fields of human knowledge spanning literature, philosophy, science, mathematics, music
and religion etc., possessing the unique distinction of unbroken continuity up to the modern
age. More strikingly, the vast expansion of our education system after independence with
the establishment of more than 600 universities, dozen of IITs, several IISERs, NISER, and
more than 100 of national laboratories and research institutes has earned it the reputation
of being the largest educational system in the world. Needless to mention that many of our
top ranking institutions are in no way less equipped in terms of infrastructure and facilities
compared to their counter parts in the western world.

The spectacular achievement of Indian science in the first half of twentieth century
before independence, through the works of C.V. Raman, J.C. Bose, M.N. Saha, H.J. Bhabha,
S.N. Bose et. al. carried out in a couple of Indian universities with meager facilities worth
the name, defies all sense of logic and reason, when contrasted with the current scenario.
How does one reconcile the present lack lustre and dismal performance of Indian universities
and higher institutions of learning not being able to occupy a single position in the list of
top 200 universities in the world? Presently, our country is an impoverished soft power
in science, although it can be considered a hard power as the above data suggests. The
present scientific culture is not empowering it to take a leading role in international science.
What is culture? The values, ethos, faith, thought and understanding collectively held by a
nation, people or community and their outward manifestation in the form of customs, ways
of working, taste, sensitivity and sensibility can perhaps qualify to be a concise definition.
At the core, there is an underlying passion guiding the thought and action of every member
of the community towards a goal without his apparent consciousness. Thus it is an invisible
force directly and imperceptibly operating on the minds of the individual in the collective

body and guiding the achievement, success and fulfillment in life.



The buzzword is collectivity. One may remember that, human civilization was born and
flourished when pre-historic man came together and participated in living, hunting, food
collecting, fighting against wild animals and vagaries of nature forming a society. Does India
have a viable scientific/academic community similar to those of western countries? Before
independence we had a small scientific community scattered in few universities and colleges.
However it was regarded as a part of British community which was most flourishing and
dominant at the world level. Britain was then the centre of gravity of international science
and the seat of biggest global power in the history. Needless to mention the Nobel Prize
of C. V. Raman in physics and that of Ravindranath Tagore in literature are considerably
supported by the common bond of fraternity of this larger community. The small Indian
community was undoubtedly imbued with its soft power. Unfortunately in the post inde-
pendence era, we have not been able to create a viable self-supporting community of our
own with the required passion, values, ethos and vision to inspire us, to play a dominant
role in international science although the nation has invested substantially in developing its
hard power. Feudalism and cronyism, the legacy of the past thousand years of history is
weighing heavily on our consciousness and polluting the educational and scientific sphere
of the country rendering them lack lusture. The specific example of the physics journal
PRAMANA can be cited here. It was started in mid 1960s with great hope to act as the
vehicle to carry Indian innovative ideas to the international arena. It has not succeeded
and the country has to depend upon the western journals for the same. In 1978, when
the author was visiting Niels Bohr Institute, Copenhagen, he had the pleasant experience
of meeting a senior physicist from Japan, who gave the following suggestions to improve
Indian science. “Firstly the manuscript submitted to journals for publication should be
neatly typed to avoid rejection, which was relevant then. Secondly India should have its
own journal with international circulation for publication of its new ideas, which would be
an uphill task for acceptance in western journals.” When I asked what they do in Japan,
he replied; “(1) We first publish our new ideas in Japanese journals. (2) Then we submit
the same to international conferences, which we attend with large number of colleagues to
defend it. (3) Finally we submit to international journals.

H. Yukawa was awarded Nobel Prize in 1949 for meson theory of nuclear force which
he published in the form of eight papers in Japanese journals. This practice has been
continuing in Japan with rich dividends. It is in fact a common feature with other advanced
nations. Before the advent of European Union, all its constituent countries small and big,
were nurturing their own journals for such contingency.

Soft power cannot be enhanced by investment of large amount of funds by the country
into science, nor by enactment of any law but by enlightened awareness and conscious effort

of nurturing the culture cited above by the science fraternity, more so by its leaders.

L. Satpathy

204



STUDENT JOURNAL OF PHYSICS © Indian Association of Physics Teachers

| TURNING POINTS |
Re-Creating the Big Bang

Rajiv V. Gavai
Department of Theoretical Physics, Tata Institute of FundamentalaR#seHomi Bhabha Road, Mumbai
400005, India

Abstract. A few microseconds after the Big Bang, our Universe may have beerindited by a hitherto
undiscovered phase, called Quark-Gluon Plasma (QGP). The thesinpng interactions, Quantum Chromo
Dynamics (QCD)predicts a transition of the strongly interacting matter to Quark-Gluon Plasma at high tem
peratures and/or densities. Heavy ion collision experiments at very Imglgies at Brookhaven National
Laboratory, New York and CERN, Geneva have the potential for griaduthe right conditions for such a
transition to occur. This introductory review of the subject is aimed at eipawhat quark-gluon plasma
is, why it is important and how it can be created and studied in the laboratmjke other interactions in
nature, the QCD coupling, a measure of its strength of interaction, caergestrong, thereby necessitating
new theoretical tools. QCD on a space-time lattice is the most reliable suchvitable to us. Lattice QCD
on Supercomputers has enabled us to predict both the transition to QG&® quiththe properties of the QGP
phase. The same techniques also predict a QCD critical point whichiesgrds have begun actively to search
for. Indian efforts in both theoretical and experimental directions arg strong in these areas.

Communicated by: D.P. Roy

1. INTRODUCTION: WHAT ISTHE BIG BANG ?

All ancient civilizations, including our own Indian civélation, have wondered about the origins of
the Universe we find ourselves in. Questions like what we,taadvorld around us, are made of
and how our Universe began, i.e., if it did have a beginnimgehconsumed all of us. The common
answers we heard as children were thatR#nch Mahabhoota”and concepts likéPralaya” etc.
Others, e.g., the Greek and other western civilizatiors ladsl similar ideas. It was, however, after
the great observational research work of the likes of Galiled Kepler, and the laying of theoretical
foundations by people like Newton, that modern sciencelglbegan dominating our methodology
to answer such questions. Amazingly, humongous progresbden made in coming closer to the
answers of such questions. Indeed, as Einstein once rethdvideat is really incomprehensible is
that our Universe is so comprehensible to us at all.” . Todayall are aware of molecules and
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atoms as the basic building blocks of the matter around e#jding we ourselves. Similarly, we
have learnt about our Solar system and the fact that our Eadhplanet which revolves round
the Sun to give us the seasons we enjoy. Observations plagetical role in building up these
concepts. Galileo used the telescope to advance our knge/lgdour Solar system. Microscopes
revealed to us the marvels of the otherwise invisible woflgmaller objects. Essentially the same
idea of using telescopes and microscopes, but bigger ane powverful ones, have lead us further
beyond the above mentioned picture we learn in the schoais,Mie now know that our Sun is just
one star out of the many crores of stars in our galaxy, calldkyMVay (Aakashgang#n Marathi).

Our Universe has crores of such galaxies. One way to imagjitteeae mind-bogglingly huge
numbers, and the size of the Universe they imply, is to usésittehat light travels very fast, about
300, 000 kilometers in one second. Let us call this distameelight-second. The diameter of our
Earth is about 0.0425 light-seconds and our Sun is 499 §ghonds, i.e. 8.317 light-minutes away
from us. So we say light from our Sun takes about 8 minutesaotress. The light from the closest
star takes about 4.22 years to reach us while it takes ab®@/®Q@ years to cross our disc shaped
Milky Way galaxy. The size of our Universe in these same uisit56 abja (billion) light years !
Surprisingly, we still can claim to understand in a simpleylnaw the Universe began and evolved.
To be sure, many details are still missing and will need tolbgged in after further research. | will
narrate a part of the story of our Universe below which anglygioan perhaps be re-created in the
laboratory.

CosMIC MICROWAVE BACKGROUND SPECTRUM FrROM COBE

THEORY AND OBSERVATION AGREE

:
:
&
§
¥
:

Figurel. COBE measurement [2] of the cosmic microwave background radidt®n
peak location measures the temperature of our Universe 380,080aga
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Re-Creating the Big Bang

Edwin Hubbles observation of stellar objects lead him t@ptmding a law for them: Distant
galaxies move away from us at a rate proportional to thetadiee (as measured by their red-shift).
This in turn led to a picture of our Universe as having beersdeim the past than now. The Big
Bang theory of Universe accounts for this law by the assethat our Universe was born in a hot,
giant explosion and subsequently cooled by expansion[hg Strongest evidence to date for this
theory has come from the increasingly precise measureroétiie cosmic microwave background
radiation (CMBR), shown in the Figure 1. In spite of displayihe error bars on the observed data a
couple of hundred times more than actually are, one seesaspetiect agreement of the theoretical
black body curve with the data such that the latter are toiallisible. In fact, this is the most
perfect observed black body radiation spectrum ever. lbeansed to determine the temperature of
our entire Universe today. Its perfection enables us tosues the rather low temperature of our
Universe to an incredible precision.

The temperature thus measured is of that epoch of the Usiatrghich electromagnetic radi-
ation decoupled from matte?” ~ 3000 deg K, red-shifted due to the expansion of our Universe to
T = 2.726 deg K. Using the fluctuations in this background temperaturepastners from WMAP
satellite experiment have even constructed the earliettngi of our Universe at about 380,000 years
of its age.

A natural consequence of the expansion is that the Univeasermuch hotter at earlier times.
If we understand well the physics of those early times, oeay igh temperatures, then we will be
able to glance into still earlier times in the history of theilérse. Thus, e.g., our extensive knowl-
edge of the many nuclear reactions has enabled us to estineatempositions of our Universe in
terms of the basic elements. Its confirmation by observati@as inspired confidence in our scenario
up to about the first three minutes of the age of the Universew@ approach the big bang itself,
the next new landmark of physics is at about 10-20 s, corretipg to the formation of protons
and neutrons from a hitherto unobserved state of mattezcc@uark-Gluon Plasma[3]. At a few
microseconds after the Big Bang, our Universe may have besmndted by quark-gluon plasma
(QGP). Heavy ion collision experiments at very high enesgieBrookhaven National Laboratory,
New York and now at the Large Hadron Collider in CERN, Genexetthe potential for producing
the right conditions for such a phase transition to occuris Titroductory review of the subject
endeavours to explain what quark-gluon plasma is, why ihsartant and how it can be created and
studied in laboratory.

1.1 Why Re-Create the Big-Bang ?

The known interactions a century ago were Electromagnefisgravity and the then known ele-

mentary particles were electrons and atoms. We all learatdabem in schools. Rutherford’s classic
scattering experiment, and its subsequent sophistica&teibwns in form of high energy particle ac-
celerators and detectors, yielded various new layers ¢dibgiblocks. Thus, we now know that the
atoms are further made of electrons surrounding nuclei.irfhenbers and properties decide the
property of the material such as conductors and insulaidre.nucleus itself is made from proton,
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neutrons and pions. In turn, these particles are furtherenfiean even tinier quarks and gluons.
The best way to imagine them is to think of their sizes. A tgbatom is a few Angstroms in size,
i.e, about one croreth part of the centimetre we use in diély A nucleus is roughly 10000 times
smaller than an atom, and a quark is further 1000 times smallaost the same size as that of an
electron, also called a lepton. Quarks and leptons are toetgrded as the elementary particles
from which our matter is made. Protons and neutrons makeaupublei discovered by Rutherford,
while they themselves are made up of quarks: Proton(Newosists of two u(d) type of quarks

and one d(u) quark while a pion, regarded as the key behindutiear force, is made of a u-quark
and d-antiquark.

% 200F
= E Quarks and Gluons
= 5 \
& "<° C On
= @ iy iy
= | 7] a,
45 (4] % Q/é&?q;’;@afﬁ
8 100} l (; " @ Critical point?-
£ =2 ;
K 0 Hadrons :
/ >
'—/ /-
0 1 . 7

Net Baryon Density

Figure2. Expected QCD phase diagram. We hope to establish the QCD critical point
and other features by better theoretical and experimental efforts intilne f

Over the years, strong and weak nuclear forces got added tstlof forces. A variety of vec-
tor bosons act as the carriers of these forces. The streoffthsse forces are substantially different.
While the electromagnetic interaction is two orders of magté smaller than the strong interac-
tions which bind quarks together into protons and neutribis,an order of magnitude larger than
the weak nuclear force. Massless gluons are the vectoclesrtivhich carry the strong interaction
whereas massive W and Z-bosons (80 times mass of the pratog)the weak nuclear force. Grav-
ity, the most familiar force is the weakest force being serdtly about 37 orders of magnitude than
the electromagnetic force. These become relevant in dbngréhe history of our Universe close to
the instant of the big bang (a billionth of a billionth of allahth of a billionth of second after the
big bang) whereas the weak interaction played the domirdatar few nanoseconds after the Big
Bang. So far, we have no good idea of how to study matter atsaidi times. It is an interesting
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challenge to come up with an idea to do so. On the other handloweave experimental tools to

produce matter that may have existed in our Universe a fewasgéconds after the Big Bang in a
laboratory. Furthermore, we also have a theory for the gtrarclear force, as well as a method of
computation for it, to derive the properties of matter unglech conditions at that time, as we shall
discuss below.

2. PHASE DIAGRAM OF STRONG MATTER

2.1 Some results

R Quenched QCD (T;)
8 RHIC Au-Au
o 5ps 5-5
— SpS S-Ag
- SpS Pb-Pb
— s AGS Au-Au

AGS Si-Au b s i

0.0 0.4 0.6 0.8 1
A

Figure3. Experimental results for the excess strangeness produced in nucielesis
collisions compared to lattice QCD results[4].

Quantum Chromo Dynamics (QCD) is the (gauge) theory of figfrinteractions of quarks and
gluons. The strength of this force as well as its complexdgdks to a much richer structure: Quarks
are permanently confined to hadrons like proton and neutrardynamical symmetry breaking
ensures that the quarks become massive due to interacliboggh free quarks are rather light etc.
These and many more such properties need to be obtained f&in @While in the early days of
strong interactions, one attempted to understand theserésabased on models, we now have a
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powerful technique, called lattice field theory, to deritern from the basic theory. Indeed, fifty
years after the discovery of proton and neutron was it ptessiball to calculate their masses and
their structure from this basic underlying theory QCD usliatgice field theory techniques. This
same lattice technique, as well as certain models, preewtphases of matter at high temperatures
and densities shown in the Figure 2. Quark-Gluon Plasmadssanh new phase. It is expected to
be produced in Relativistic Heavy lon Collisions as we sbadl in the next section. Its experimental
confirmation will test the predictions of the theory of stgoimteraction QCD in a new domain.
Moreover, since such temperatures are relevant to our tha\at a few microseconds after the big
bang, these collisions will permit us to study the physicsuath early times. The figure also shows
a depiction of the various new phases one expects to see iartiperature-density phase diagram
of QCD. At high enough densities, such as those that exiseiy gense stars, the novel phase of
colour superconductivity may manifest itself. Whether tas have any observable consequences
is a subject of active research as is the subject of invastigthe entire phase structure from QCD.

1.1 ; : . .

TITc
=
(S}

06¢

0.7

Figure4. QCD Critical point determinations from two computations with different
spatial volumes. The “freezeout curve’ is determined from the éxmetal results on
particle productions.

The lattice technique has led to a prediction that the usuebar matter, consisting of protons,
neutron, pions etc. undergoes a transition to the new QGéukn plasma state at a temperature
Tc ~ 160 MeV (about 2 trillion degrees Kelvin). It has also resultadfie equation of state and
many other properties, notably the Wroblewski Parametenystere on the right from our work
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[4]. It is a measure of the production of strange quark-asstif pairs. It has been proposed as
a signal for the new phase, Quark-Gluon Plasma. As one sdhe frigure 3, experiments agree
with theoretical (lattice QCD) estimates for the new st&everal other correlations for Heavy lon
Physics have been predicted theoretically in the same wayinBtance, lattice QCD also suggests
that strangeness is carried by quark-like objects, andstphe idea that flavour in general shows
quasi-quark behaviour. The flavour here is a charactetisticseparates different type of quarks.

Theoretical physicists, including us [5] have also attesdpib look for the critical point in
the colourful artistic sketch above. We find it to be locatedraaller densities than expected. As
shown in the Figure 4, our estimate is that the relativistiavy ion collider (RHIC), if run at lower
colliding energy of about 20-30 GeV, can potentially dissoi. Since these collisions take place
on a very short time scale, it is a challenging task to lookafoy signs/imprints of the QCD critical
point in their end products. While we shall discuss in moraitkethe experimental aspects of
these collisions, let me remark that the basic physics ta thenQCD critical point is the same as
that for usual critical points in the liquid-gas phase diags we learn in textbooks, namely critical
fluctuations. Any physical quantity displays thermal flattans. Indeed, many usual experiments
have to be done at very low temperatures to minimize themhdrvicinity of a phase transition or
equivalently a critical point the fluctuations become iriéityi large. By observing their effects, one
hopes to pin down a critical point. Theorists [6] have usdticka techniques to make predictions
for such fluctuations. It will be exciting to stack them up iagathe upcoming experimental results
from RHIC and look for the signs of the QCD critical point.

3. HEAVY ION COLLISIONS

Let us now address the questions of where one can find thesphemes and whether/how they can
be produced in a laboratory. As remarked in the beginninglUmiverse was full of QGP at about
10-20 s after the the Big Bang. However, our best chance df/stg the Quark-Gluon Plasma is in
re-creating that instant of Big Bang. It turns out that theassary conditions for QGP production
in a laboratory are, 1) high energy density, 2) large sysiemand 3) production of many particles.
Heavy ion collisions at velocitie$9.5 — 99.995% that of light, possible at the colliders in CERN,
Geneva and BNL, New York, indeed meet these conditions. Hhisvtappens [1] is schematically
illustrated in the left panel of Figure 5. The fireball of QGéhdenses into hadrons in extremely
short duration of almost an instant. One is forced to siftigtothe products of the collision in order
to establish that QGP was indeed formed. This needs clevectde work. As the right panel of
Figure 5 shows, the similarity of the cooling of this firebatbduced in heavy ion collisions with
the Early Universe can be exploited to devise tools for thék tof looking for the new phase QGP.
One such tool is jet quenching. It is well known that rare héglergetic scatterings of quarks and
gluons in the colliding hadrons produce jets of particlesictSjets have been widely studied in
proton-proton and electron-positron collisions. If Qu&kion Plasma interacts with such a jet, it
causes a loss of energy due to multiple scatterings. Siresetjets emerge back-to-back due to
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momentum conservation, only one of them will be seen withother missing (or extinguished) due

to QGP. Such jet quenching has been observed rather exégndoreover, an on-off test has been

also performed by comparing the collisions of heavy-heawslai, where QGP is expected to be

formed, with light-heavy or light-light, where it is not. €Hatter two were found to have both the

jets intact and furthermore these were always back-to;kmckxpected. The jet got quenched only
in the case where QGP was expected to be formed.

When heavy nuclei collide ... =z )
Little Bang at LHC

Temperature

Freestieaming Particles *  190.mev

agion, -7 o :

“i@‘ac : g 0 ol
"~ lag Hadroh.gas. -

\\.l'--‘“ 200 MeV

et

500 MeV
=300 000 xTy,

A I

....and then freeze out
into particles ...

Figure5. Pictorial representation of heavy ion collisions explaining plasma formation
and evaporation (left) and possible signatures of the plasma (right).

Additional evidence for QGP has also been found by lookingtifie flow in transverse di-
rections which suggests that QGP flows as a perfect liquid edsentially no viscosity. Debye
screening, characteristic of plasma, can stop quarks fiiodtirtg in to hadrons. Anomalous sup-
pression of heavy particles callef), ¥, has shown that such Debye screening may have been present
in the aftermath of heavy ion collisions. Thus one has ##-signs of the new phase Quark-Gluon
Plasma having been produced in these collisions.
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4. SUMMARY

Lattice QCD predicts new states of strongly interactingtaratnd is able to shed light on the prop-
erties of the Quark-Gluon plasma (QGP) phase. Our resulitrangeness production are consistent
with the expectation of formation of QGP in experiments. \&erfd that correlations of quantum
numbers suggest QGP to have quark-like excitations. Heavybllisions in CERN Geneva, and
BNL, New York, have produced tell-tale signatures of QGPniaurprises have already been pro-
duced by the data and more excitement is likely to come in flzeming Large Hadron Collider in
CERN, Geneva.
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Diffusion Dynamics of ZnCl, in Water by Laser Beam Deflection
Method

Sukrutha. K.T. *, Sasikumar P.R!
* M.Sc. Physics (Fourth semester), Maharajas College, Kochi 68218dia
T Associate Professor (Physics), Maharajas College, Kochi 6821di,

Abstract.  Diffusion is an important phenomenon of scientific and technologicalésteand recently in-
vestigations on diffusion of many chemicals, nano-particles, protefngscetc. in liquids is a thrust area of
research. This paper presents a study of temporal and spatialdgeerof diffusion of zinc chloride in water
by laser beam deflection (LBD) method. When light is passed throughddumeof varying refractive index
the path of the beam will deflect. A region of refractive index gradienG{Rs created by carefully mixing
sample solution in water with a sharp boundary between the two solutionsdéteagelar glass cell of volume
about 50cc. Diffusion of one liquid into the other lead to a concentratiodigmg which results a spatially
and temporally varying RIG. Light from a He-Ne laser, after produeirign of ray using a cylindrical lens, is
passed through the mixing zone in the liquids so that the refracted raythgiv.BD pattern, which is collected
on a screen. The LBD pattern transformed to a Gaussian profile, thevioiiff at half maximum is related
to the diffusion coefficient. The value of diffusion coefficient of zindochle solution in water obtained is
1.92 x 10~ *e¢m? /sec. The method can be used to determine the diffusion coefficient of mthey materials.

Communicated by: K.C. Ajith Prasad

1. INTRODUCTION

The propagation of an optical beam through a medium chaiaeteby spatial and temporal varia-
tion of refractive index is perhaps one of the most widelgdssed topic in optical science. Charac-
teristics of such a medium will give valuable informatiogaeding transport and optical properties
within the medium. When a light beam is passed through a na&teaiving uniform refractive in-
dex, the beam will travel along a straight path. If the medhas a varying refractive index, the
beam bends in the direction of greater refractive index.hSudeflection in liquid medium can be
observed, if there is a refractive index gradient (RIG) ia liquid medium.

2. RIGINLIQUIDS

In liquids, refractive index gradient can be produced byingxwo miscible liquids of different
refractive indices or by mixing same liquids of differenhecentrations[1-3]. The index of refraction
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of a solution is approximately proportional to its concatitm; hence the gradient of refractive index
is proportional to the gradient of concentration. Here threnfation of RIG is mainly by diffusion
of one liquid to the other.Diffusion, the stochastic motafrparticles, tends to establish a uniform
concentration. If a concentration gradient is establistinesh diffusion broadens and lowers the
concentration gradient over time. Consider two misciblelfitA and B superposed vertically in a
cell diffuse in course of time. At time t=0, we deposit a thlaier of B on top of A. The lighter
liquid B is put over the heavier one A(Figure 1).The time etioin of density, between two miscible
liquids in the separating region give rise to a vertical geatof refractive index.

3. LASER BEAM DEFLECTION IN LIQUIDS

Laser beam deflection (LBD) technique is an effective andgitiea method for studying the re-
fractive index gradient created in a medium by various caulike temperature and concentration
variation. In this method a laser beam with a Gaussian prisfisdlowed to pass through the inter-
face region, in which the refractive index gradient has lreated by diffusion of liquid into water.
The amount of deflection suffered by the laser beam is a dineetsure of the RIG that has been
caused in the defined region and hence yields the value ofataareters of the physical processes
that creates the RIG. The method can be used to study theioarid the diffusion coefficient with
concentration in liquid. The high accuracy is a result of fdxet that no sampling is required and
that a large number of transient measurements can be matBDlit is possible to determine the
diffusing properties in the diffusing medium simultanelgweg various special points. This will help
to identify the presence of any spatial anisotropy in the iomad The successful determination of
diffusion coefficient demonstrates that this techniquddatbe used in practice for the measurement
of diffusivity in many chemically and biologically impontasolutions including nano fluids.

In the case of electrolytic solutions, diffusion co-effiti€D) depends on concentration. The
diffusion equation can be written as [4,5],

Oc 9?c
o~ Pz (1)

For low concentration, which corresponds to concentratidependent case, it can be treated this

equation for the following initial conditions, at time t=@tssfies a step like concentration as,
c=cy Fory <0

c=0 Fory >0

A solution with above distribution can be realized by callgftaking a salt solution of higher
refractive index at a known concentratiofnin the regiony < 0 and water lower refractive index
for y > 0. The diffusion of solution in water will develop a gradientGrformation as a result of
concentration variation. As time evolves the concentragiadient disappears and this will result in
the broadening of the Gaussian function. Taking above gtepitial concentration the variation
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of concentration at particular intervals is given by [6]

dc Co —y2
(dy> =iz i) @
This is a Gaussian function and will be of the same shapedraaeby the deflected beam at the
boundary. The half width of the curve at a maximumdef dy is measured for a particular time.
A graph is plotted betweeyf/2 andt the slope of which istDlog.2 and hence, the diffusion
coefficientD can be calculated using

2

Y12
= 3
4tloge2 3)

4. EXPERIMENTAL SET-UP

Diffusion Cell

Figure 1. Experimental arrangement for LBD

The basic theory of the method is the deflection of light bedramit passes through a medium
having concentration gradient. Rectangular cell is plaated suitable height. A glass rod about
0.5cm radius mounted db° with respect to the vertical can be used in place of cyliradriens
so as to get a large range of fanned light from a He-Ne laserawklgngth 632.8nm. Take 20ml
of water and pipette 20ml of experimental solution in to @gth no random region separating the
liquids. The laser beam is deflected at the interface andefieaed beam can be obtained on the
screen. The emerging fan of rays then passes through trengedar diffusion cell in which the
two liquids were diffusing into each other across a horiabntiscible interface and allow falling
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Figure 2. LBD pattern of ZnCl» in water at different time (bottom t=0 second then
after 30 minutes).

diagonally on the screen. In the absence of liquid in the tiedl cylindrical lens produces a straight
line image on a screen kept nearly 1.5m away from the cell stiagght line image will be modified
when one takes the solution in the cell with concentratiadgmt due to deflection of light beam
resulting from local variation of density and hence theaefive index.Adjust distance between
the cell and screen to about 1.5m. The experimental arragigieisishown in Figure 1. Adjust the
inclination of the glass road, if necessary, to set thisdinks° to the vertical. To start the experiment
pours the lighter liquid (water) in to the cell and equal amioaf denser liquid £nCl,) is pipette

to the bottom of the cell, in order to minimize the initial rivig of the liquid. The fanned out laser
beam is deflected at the interface and the image of the deflbetam is obtained on the screen kept
at a distance from the cell. The image of the scattered be&raded out on a graph paper(Figure
2). The observations are made for various tittend concentrations. The experimental curves of
de/dy versusy obtained at various time intervals from which the half widfithe curve at a half
maximum is found. It is then plotted (Figure 3) against tinmel ghe slope is evaluated atid is
calculated using equation (3).

5. RESULTS AND DISCUSSIONS

Studies on diffusion inZnCl;y solution were carried out by LBD technique with concentragi
8.1779/20ml. In the present work, laser beam deflectiafvid’'l; solution is investigated. The dif-
fusion coefficient oZnCl5 solution in water and the shift of the LBD peaks are studidte Falue
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0 5000 10000 15000 20000
fime in seconds

Figure 3. Plot of 47, as a function of

of diffusion coefficient ofZnC1, solution is obtained a®=1.92 x 10~*cm?/sec. The maximum
deflection point shifts towards the left where the concdintnagradient is the highest. The area
enclosed by the LBD image decreases as time progresseseaudeéftaction suffered by the laser
beam in the solution varies exponentially with time which ba utilized to investigate the diffusion
mechanism of the solution.
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1. INTRODUCTION

Simple mechanical models often provide insights into cacaptd physical processes in nature.
Consider, for example, phase transition of ferromagnetsalthe Curie temperature. Below the
Curie temperature, within the material, neighbouring nadignspins are aligned parallel. As we
increase the temperature towards the Curie point, theraligih (magnetization) within each domain
decreases. Above the Curie temperature, the local magtiptites are randomly oriented and
therefore the material behaves as a paramagnet. Theobnatidarstanding of this phenomenon,
including the system’s behaviour at the Curie point requitee use of sophisticated techniques
of field theory and renormalization group. One may inquirthdre exists simple models which
capture, at-least qualitatively, some essential featirtss transition.

Indeed in|[[1], such a model was analyzed. It consists of a bEathssn moving freely along
a vertical loop. The loop is then made to rotate about a \@ixis passing through its center. It can
be shown that if the loop rotates with a very small angulanei&y w, the bead stays at the bottom of
the loop. However, as the angular velocity is increasedoiéa critical velocityw., minimization
of the potential energy requires the bead to sit at a non2€tois shown in the figure). As we
further increasey, 6 increases, reaching/2 with w — co. Note that the symmetry — —6, which
was present initially, is spontaneously brokendor- w. by the equilibrium position of the bead.
Similarities with ferromagnetic transition is now immetia While the role of the temperature is
played by the angular velocity, the position of the beafll behaves similar to the order parameter,
magnetization. Hence, the paramagnetic phase is analégdhosw < w. phase of the model. In
literature this phenomena is known as a bifurcation. Whereaifip physical parameter crosses a
threshold value, the system generally organizes itselfienastable state causing a bifurcation from
the original one.

What happens in ferromagnetic material if we quench the teatype from a low value to
a value above the Curie temperature? Since temperaturaad ttery fast, immediately after the
quench, the system will still be in its unstable ferromagnstate. However, slowly with time, the
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system will roll down to the stable paramagnetic state. Wieask similar question within the model
we are discussing. Suppose we gquench the angular velogity drvery low value to a higher one
(> w¢), we should be able to find a time-dependent rolling downtgmuvhich will interpolate
betweerf = 0 and af non-zero value. Indeed inl[2], such a solution was expjictnstructed.

In this paper, we discuss the same model when it is rotatedt @beertical axigloes not pass
through the center. This is explicitly shown in Figlide 1. Amlyzed in |[1], this model depicts
some features of ferromagnetic material in an external etagfield. Here the rotational symmetry
is broken by external field itself. Similarly, by choosing-oénter axis of rotation, we break the
60 — —6 symmetry in our model right from the beginning. We will deéberthe model in brief in
the next section. Our primary aim of this work is to constrexylicit rolling down solution as we
suddenly shift the axis of rotation of the loop parallely.isTis what we discuss in the third section.
The last section summarizes the results.

Figure 1. A vertical loop carrying a movable friction-lees bead is rotating about an
off-center vertical axis, at a distancefrom the center, with a constant frequency
The positive values ofl andf are shown by the horizontal axis at the bottom.

2. THE LAGRANGIAN AND THE EQUATION OF MOTION

As discussed in [1], the model has an effective Lagrangiacrifgion. Let us assume that at any
instant of time the mass is at a positiéft) The Lagrangian then reads [1]

L = kinetic energy — potential energy. Q)
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While the kinetic energy is given by

1 . 1
KE = §mR292 + 5mw?(Rsin? 6+ A)?, 2)

the potential energy is
PE = —mgRcos#. 3
Therefore the total Lagrangian is

1 : 1
L= imsz)z + §mw2 (Rsin® 0 + A)? + mgR cos . 4)

This allows us to have a description of the system in terms @ffactive potential
1
V' = fgmwQ(RsiHQ 6+ A)?> — mgR cos¥. (5)
Or, in other words, we can study the equilibrium positionhe bead by analyzing the minima of

the potential

|4 Vv cosf 1(5' 0+ a)? (6)
= =— — —(sinf + «
mgR 2 ’

where we have defined

2
and 5 = % (7)

o = E,
Note that, because of the presencexpthe potential does not haveéda— —0 symmetry.

In the following, we will study the effective potential inghranges > 1 and for all positivex.
Notice that, fora = 0, it has a maximum a = 0 with two symmetric minima at

Oy = &+ cos™(1/p). (8)

Let the bead be in one of the degenerate minima. We choosestfative one. Now we increase
«. This means that, in Figurgl(1), we move the axis of rotatmthe right. For very large,, we
can neglect theind term in the potential. It then easily follows that there idyoone minimum at
approximately

6 = tan™'(Ba) 9

So at this highy, the bead must be resting at a positivgalue. To find at what value af, the
transition from negative to positivkoccurred, it is instructive to search if there is an inflectmint
associated with the effective potential. Indeed there ésamd that can be found by setting first and
second) derivative to zero. It occurs at

a=a.=(1-B72332 cos, = (10)

1
ﬂ1/3
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a

Figure 2. Bifurcation Diagram for the model. The dotted lines show the points of
unstable equilibrium; whereas the solid lines represent points of stahld&oggm. As
soon asv is slightly decreased from the maximum (calkit) — which is the transition
point with saddle-point bifurcation —, the particle sitting on the left false &ashould
slip down to the true vacuum at the right.

The dependence of equilibrium angle on alpha is shown inrE[@wby a bifurcation diagranm|[4].
Further, the behaviour of the potential is shown in Fidure 3.

Now we would like to address the following question. Suppdeea fixed 3, we suddenly
changex from a value less thea, to a value greater tham,, how is the bead going to relax from
a wrong ground state (at negati¢®to the right one (in positivd)? To address this question, we
need to find out a rolling down solution éfas a function ofime. We address this issue in the next
section.

3. INTERPOLATING SOLUTION

We start with by writing down the Euler-Lagrange equatiaat fiollows from [4). This is given by

d?0 2A
el w? sinf cos — % cost + % sind = 0 (12)

By definingt = wt, we can re-write the equation as
d%0 1
ol sinf cosf — o cosf + 3 sinf = 0. (22)

Integrating this equation once, we get
1/7doN2 1 1
3 (E) + 1 c0s20 — v sinfl — B cosf = c, (13)
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Figure 3. Effective potential for fixedd = 3 and for variousa. For

a = 0 (dashed line), there are degenerate minima. The solid line is for
a = a. = (1 - 572/3)3/2 = 374 which shows the inflection point arising from
the left minimum. Fory = .5, single minimum is shown by the dotted line.

where, ¢ is an integration constant to be determined by thadery condition. Note that the above
equation is just a statement of energy conservation.

To this end, let us consider the following situation. Sugpa® start witho = 0 andg > 1.
The particle is sitting in one of the degenerate minima glygn

6, =cos™! (%), or f_ =27 — cos ! (%) (14)

Let us take the second one. Now we suddenly increasea value greater tham.. Sincef_ is
no longer a minimum of the effective potential, particle xpected to roll down from its unstable
position with zero initial velocity. This condition allowstto fix the constant appearing [n{13).

d—qzo, at0=0_, (15)
dt

With this value of the constant, one can search for a time rdg#& solution fo simply by in-
tegrating [(IB). This exercise can be performed exactlythmitsolution is a bit messy. We rather
illustrate here with specific values @fanda. Let us choos@ = 3. Using [10), we getr, = .3742.
We therefore taker = .375. With this the boundary condition can be solved to get 0.0472.
Now the equatior{13) can be re-written as

/ 0 —= [ di (16)
V/2asing + 2/ cos — cos20/2 + 2 x .0472
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#it)

Figure4. Behaviour off(f) with £ for « = .375 wherea,. = .3742. We have set
B = 3. The figure, which would correspond to a bounced like solution in Euclidea
time, is seen as an interpolating one in real time.

The integral on the left hand side 6f{16) can be solved. Hewedwt again the result is not
very illuminating. We instead represent the solution gieglly. This is shown in Figurgl4.

4. SUMMARY

To conclude, in this paper, we reviewed a toy model which w&st certain qualitative behaviour
of a ferromagnet as we tune its temperature in the preserme etternal magnetic filed. We then
constructed a time-dependent classical solution reptieggts relaxation from false to a true ground
state after the model is appropriately quenched.
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Abstract. In this article, we present an alternative derivation of the Thomas gseeeffect. The derivation
follows from a method of generalization of inertial forces to relativistic domgiven by H. Nikolé. The
basic method employed is to sum infinitesimal Lorentz transformations iie@ at the metric tensor for an
accelerating observer (in flat space-time). Using this in the geodesitiequives the equation of motion of
a free particle in a (non inertial) accelerated frame in flat space-time.€Tiation has the correct Newtonian
limit and gives the desired expression for the Thomas precession.

Communicated by: D.P. Roy

1. INTRODUCTION

In Newtonian mechanics, the inertial forces (i.e. forcekinématic origin), acting on a particle for
a non-inertial observer are well known. However, Newtomaechanics is valid only in the limit
of speeds low compared to the speed of light c. It is a limitiage of Einstein’s special relativistic
mechanics. So, a natural question to ask is how the inedrak$ of Newtonian mechanics are
generalized to the relativistic domain. This question isegon-trivial and in this article, we present
in detail one approach due to H. Nikél{2004) to arrive at the relativistic form of inertial forces
that in the low speed limit reduce to the known results of M&dn mechanics. In addition, this
generalization reproduces the well known relativistieceff namely Thomas precession, and thus
provides an independent way of arriving at this effect.

This article is organized as follows: in section 2, a sumn@rinertial forces in Newtonian
mechanics is given. Section 3 is devoted to obtain the mignisor for an accelerating observer in
flat space-time. In section 4, we use the metric tensor toirokite equation of motion of a free
particle as seen by the accelerating observer. This equatsoexpected, has the correct Newtonian
limit. Further, it also contain terms, analogous to thetinéforces for a rotating frame in Newtonian
mechanics, with an angular velocity that is the familiar fas precession velocity.

*mritunjay@cbs.ac.in
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2. INERTIAL FORCESIN NEWTONIAN MECHANICS

As we know, Newton’s second law, namen”7y = ma (whereﬁ is a force due to some physical
agency) holds true only in inertial frames (defined as a cirate system in which a particle free
from all physical interactions moves with a constant veigciThis is the simplest form of equation
of motion of a particle. (This is true for any physical law. eltaws of nature take their simplest
mathematical form in inertial frames). However, if we waotanalyze the motion of the same
particle from the point of view of a non-inertial observenumber of additional terms arise and the
equationﬁ = ma gets modified. The origin of these terms is purely kinematithese additional
terms are proportional to inertial mass and are varioudigdénertial forces, pseudo forces, frame
dependent forces, etc.

In Newtonian mechanics, the equation of motion of a freeigdartor a non inertial observer is
well known and is given by

A= G-Gx (@xz)-2@x7")-&x ' 1)

where A’ is the acceleration of the particle as measured by the natidhebserver.d and are
the acceleration and rotational velocity respectivelyhef hon inertial observer’ andz’ are the
velocity and position vector respectively of the particiéhwespect to the non inertial observer.

The second term on the right hand side, in the above equé&iknpwn as theentrifugal term
while the third term is known as theoriolisterm. The third term is present only when the particle
has a non-zero velocity with respect to the the non-ineotislerver. The last term vanishesdifis
constant.

In the present article, we give the relativistic generaigraof equation (1) for the case of pure
translational acceleration, i.e. far = 0. The general case is considerably more involved and is
treated in references [1] and [2]. See also reference [Sthvprovides this derivation in much
detail.

3. METRIC TENSOR OF THE ACCELERATING OBSERVER

We consider an inertial frame S and a non inertial frashevhich has translational acceleratian
with respect to the inertial frame S. An observer is locatetha origin of the non inertial frame.
In the approach considered here [1], the calculation of te&imtensor is valid only for the non
inertial observer at the origin (this will be clear subsetjlyein the calculation). For obtaining the
equation of motion of a free particle with respect to a nomtiakobserver however, this is all we
require.

The (covariant) metric tensor for an observer in S is thedstethmetric of special relativity
given by

Guv = Nuv :diag(l,—l,—l,—l) (2)
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We use the convention that the Greek indigeg/(etc.) run ovel, 1, 2, 3 while the roman indices
(i, j etc.) run overl, 2, 3 and denote the three spatial components of a vector.
If g,,,, is the metric tensor for the non inertial observer, the tveoratated by

o P
g;“, = %%gw} (3)
Thus, to computg;,,, we need the relationship betweefiandz'* i.e. we require co-ordinate
transformation equation between these two frames. Thisfwamation is not the familiar Lorentz
transformation, which is valid only for two inertial obserg in uniform relative motion. Observer
in S’ is accelerating. So we need to generalize the Lorentz wemstion. This is done in the next
subsection.

3.1 Generalized Lorentz Transformation

The usual Lorentz transformation between two inertial amelated by a constant relative velocity
i is given by

2 =~y(z" + .2 ) and zi:x’iJr('y—l)ﬁﬁ/uiJr'yuix’o (4)
c ,
where a given event has co-ordinates, z*) with respect to S and co-ordinatés’, ='*) with
respect toS” andy = —=

12 :
V-5

Equation (4) gives the Lorentz transformation in which tledogity « of S’ relative to S is
along an arbitrary direction (the axes of S afidcare however parallel).
Let,z* = fH(x'°, Z’; @) denote the above Lorentz transformation for constantivelaelocity

u.

Transition to the non inertial fram&’ introduces a time dependent velocity: — @(z°) =
i(z'°, 2'") = @(2'°) (sincex’* = 0 for the observer at origin) in which case transformatiomieen
S andS’ is not given by equation (4). However, the required tramsfition between S anfl’ can
be obtained by summing the infinitesimal Lorentz transfdiomegiven by the differential

ax/l/

n
dzt = (8f )dx'” = fH(z'°, 2" d)da"” ®)

where,

m
v o v
Ox d=constant

Using equation (4), we obtain

0 o _ Uy P i i =7
f0:77 f] :Tja fo: c 5 and fj:5j+7uu]
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We can integrate equation (5) to get the relation betweeandz’#. We integrate the equation
from z/* = (0,0) to 2’* = (2/°,2'7). This is done as follows

ot = / fﬁ(l‘/m,o; ﬁ(aj//o))dx”o Jr/ f;;(zlo,f/;ﬁ(:r/o))daj/k (6)
o C

Sincedx* is an exact differential, the integration will give the saareswer whatever path we
choose between the end points. So, for convenience we claopath which has two segments.
Along the first segmenty”® = 0, and only temporal component® varies from 0 toz’°. Along
the second segment, we tak& = constant and vary space variahlé¢ from 0 to 2’7 along an
arbitrary spatial curve C. The advantage of choosing thik patwo segments is that time and
space integrations separate out and integration of equé)decomes tractable.

Using equation (6), and the fact that spatial integrationegafroma’* = 0 to 2’* = 27 we
obtain

$/O+A$/O

SCH +AIN :/ f#(l'//070;ﬁ(l'/lo))d$”o
0
'+ Az
+/ s (:c’” + Az’ 75 a2’ + Am’o))dx’k @)
0

We can expand various terms in second integral in the righd lsae in a Taylor series to first order
as

/() —’/ = /o
(.rlo—l-AJj/O ﬂ/ (x/°—|— A.I/O)) ~ IQL(J;IO7£/;,J(I/0)) afk( ’a l?”(x ))Aul
/o —*/ =

— fk( /07 —»/’ —»(m/o)) afk( éul ( )) 88;:/0
where we have taken into account the fact tfjaidoes not depend explicitly on time variahlé&
but depends only implicitly througf.

Noting the limit points in equation (6), we subtract the e@ra(6) from (7). In the limit
Az’ Az’ — 0, we obtain

Al’/o

aul 8 ;-L , Vi
gure” Gur S+ I A
We note from the above equation that time coordinate$ ahd theS’ observer at the origin

(so thatz'* =0) are related by = +¢' and hence for the observer at the origin,

Azt = fEAZ" +

87141_187#_181ﬁ8t v Qul Yo
dz° cotl cotor cot c

wherea! = %L is the acceleration of th8’ observer with respect to the S frame. Using this, we
obtain

of .
At = frA® + Lalald L Ar 4 [ A 8)
© c oul J
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This gives the desired co-ordinate relationship betweewvtio frames. This can be used to compute
the various partial derivatives needed to compute the onisor in equation (3). The final results
are given below

., o v
Coooxti e
oz’ , 1—7v
2. i &5 + " u'u;j 9
dz° 72 14 o k ’i
3. it C—Qaiml + a Uz
da* Yo =1 4 1y -1 j
4. = Lok - D _Zgkyalt - D g kel
ox'’° c u2c J ue 7
4
Yo ok 2y =) j
+u2 Fa U u;x’’ — g e u;x”

3.2 Metric Tensor

Metric tensor forS’ observer can now be computed using equation (3) and theuggpartial deriva-
tives as computed in previous subsection. The calculatiomstraightforward but rather lengthy, so
only the results are given here.

L. ggj = —0ij

Y~ o
2. g:)j = 92'0 = (.(WT x T');

L (@ x @) (@ x T (10)

a
3. g:)o = (]' + 2 C2

where,a’ = ¥?[a’ + L (v — 1)(@ - @)u’] and (wr); = 5o (7 — Deiju(via

77:21 (4 x @) will be later interpreted as the Thomas precession frequéhis clear that the metric

given above reduces to the usual inertial frame metric giy1,-1) when acceleration is zero.
Note that for the special case whérs parallel toi, ¢, = 0 and the metric above coincides

with the well known metric for a linearly accelerated obsgrisee, for example, reference [4])

kb ukad) & =

= 2

a -

ds® = ¢? (1 + )2dt2 —da? — dy? — d2*

Hered' is the proper acceleration of the non inertial observes #tiaightforward to show that this
interpretation ofi’ is true even whea is not parallel taz [2].
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4. GEODESIC EQUATION

Geodesic equation describes the path followed by a particleh is moving freely. One can think
of the geodesic equation as the generalization of Netwanmseffree motior% = 0. Unlike
Newton’s equation, geodesic equation is valid for a genawaldinate system not necessarily an
inertial one. Various terms appearing in the equation ofiomotan be interpreted as the inertial
forces acting on the patrticle.

The geodesic equation in any co-ordinate system for a p@rtieoving freely, is given by
d?zH dx? dxf

dr? + 1%, dr dr
wherez# is the space-time co-ordinate of the particle with respedhe observer and is the
proper time measured by a clock moving with the partielés(used as a parameter to parametrize
the curve in space-time (world-line) along which the péetis moving). I'; , is known as the
Christoffel symbol of second kind.

Now, 7 is the time measured by the clock moving with the particlet, Bie want to find the
equation of motion as seen by the non inertial observer. lacation of the particle can be obtained
using the spatial part of geodesic equation. So, we needite the spatial components of geodesic
equation in terms of time measured By observer (i.et’ = %) This task is achieved by using

temporal component of geodesic equation to elimindiar ¢'. This is done in the next subsection.

-0 (11)

4.1 Acceleration of the Particle in Non Inertial Frame

Our goal is to find an expression féj{% We proceed as follow:

dx'  da'" dft’

dr ~ dt dr
A2a'H d2z'P [ de 2 dx'™ d2¢'
dr?2 " at? (dT) ' dr?

Using this in geodesic equation, we obtain for temporal coment
PN 1, de de
dr2 \ dr LY

and for spatial component

"t (dt’>_2_ dx' &>t (dt’)_2 ; da' da'?

a2 \dr) — dt dr2\dr) P at’ dt

-2
Eliminating % (dt’> by making use of temporal component, we obtain

dr

~ 10 %

c P At at | °P 4t dt’

arz —dt

A2z dz't { 1 dz'® dx’p} o dx'e dx'P
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Expanding various summation terms and making some reamnaggt, we finally obtain the desired
result

d?z" 1., daz'7 da'* dz o] da" ; dx' dx'® gdx o,
At = e g } ar [ T
(12)

Next, we need to compute various Christoffel symbols forrttetric obtained earlier and insert in
above equation.
4.2 Computation of Christoffel Symbols

Christoffel symbols are defined as

1 99px . O9sx  04s
TH == LA p _ P . 13
o0 = 39 {(“)x"’ T w9 (13)

Here onwards we use unprimet” to represeny’**. With that, ¢** is the contravariant metric
tensor given by the inverse of matiix,, | and is computed to be

-1 “Yo1 “Yo2 “Yo3
- 2 2 - -
910 Yoot Yo T Y3 901902 901903

[g""] = .
“920 ~901902 9oo t Y1 T 953 ~902903

L Y30 “901903 “902903 9oo + ggl + 9022 i

=1 =2\ 2
where, 9= det[guy] = G009y Iar" 95 = — (1 + %)
Using the definition (13) and the expression of the metrisdéelcomponents (contravariant as
well covariant), different Christoffel symbols are comgaito be

1T =

2.3 =0

N
4
Q=
I
al
I
=2
Xy
5
&
+

c%( (I;f/>—1a,j((3T « i;/)z:|

=

5.T¢° = %(1+ @z )71 [7(@} « f/),(—i/Jr(ii/,f/]

c2

=1 =

6. 0j =% [_7(@ X &) 2 (G x (@ x Z) Y+ (14 L) o

— =

—|—%(1—|—“C'2z )_1(@'Txf’)i{—’y(@}xx @+ }
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4.3 Generalization of Inertial Forces and Thomas Precession

Various Christoffel symbols computed in previous subsectian now be inserted in equation (12)
to obtain the acceleration of the particle in terms of dyr@nguantities. The final result turns out
to be

L d%a a-#N" i
= T = <1 + = ) a4 (yay x &)
+27 (& x ﬁ’)i—yz{dT X (& X f’)}i
1 a @\ !
It (1 + > [2(17 G X F)T 4 (@ — G x @) F
{v’i — ’y((ﬂT X f’)l]
where, v’ = djt',i is the velocity of the particle as measured in the non inefttane. This is

the general equation of motion of a free particle as seen bynaimertial accelerating observer.
The various terms multiplied by the inertial mass give theegalized inertial forces in relativistic
domain.

It can be noted that the new generalized equation containy n@mplicated terms. The most
important point is that though we took the frame to be acegileg only translationally with respect
to the frame S, the inertial forces appearing in the equati@nsuch as if the frame is rotating
with angular velocity—w; (to see this, note the second, third and fourth terms in abquation and
compare with equation (1). Also note that these are thedntpntaining terms surviving upto order
3—22). Thus, a free particle (which moves uniformly in a straitjhé in the inertial frame S) in the
accelerated frame will experience inertial forces analsgo those experienced in a non relativistic
rotating frame, corresponding to a rotation-ed;. This effect is present only when the velocity
and the acceleration of the accelerating observer are Hivtear (see the definition af; just below
equation (10)). Provided; is non zero, a spin vector in the rest frame precess with cé$pehe
inertial frame S with precessional velocity. This effect is known as Thomas precession and is
patently a special relativistic effect. The standard deaidn of this effect is based on the fact that
two Lorentz boosts in arbitrary directions do not commute are equivalent to another boost plus a
rotation [3]. It is interesting to see that a completely eliéfint approach, as described in this article,
reproduces the same effect.

4.4 Newtonian limit of equation of motion

In the Newtonian limitc — oo andvy — 1. Various quantities take the limiting form
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Also, all terms containing]‘§ drop out. Hence, in the Newtonian limit, acceleration ofphaeticle in
non-inertial frame takes the form-

Al'=—-a

This matches with the Newtonian result (1) for the case whtational velocity of the non inertial
observer is zero.

5. CONCLUSION

By summing infinitesimal Lorentz transformations, we ad\at the metric tensor for an accelerated
observer, which led to the equation of motion of a free plrtior the accelerated observer. The
equation reduces to the correct Newtonian result in theagguiate limit. Moreover, it provides an
independent way to arrive at tiidiomas precession effect.
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PROBLEMSIN PHYSICS

Readersareinvited to submit the solutions of the problems in this section within two months. Correct
solutions, along with the names of the senders, will be published in the alternate issues. Solutions
should be sent to: H.S Mani, c/o AM. Sivastava, Institute of Physics, Bhubaneswar, 751005;
e-mail: ajit@iopb.res.in

Communicated by H.S. Mani

1. Consider an electric dipole made of two particles each afsm and charges) and —Q

234

connected by a massless rod of lenghwith the centre of the rod fixed at the origin and the
rod is free to rotate about the centre.

There is a uniform magnetic field = Bk along thez—axis.

(a) Using spherical polar co-ordinatés = «, 8, ¢), obtain the equations of motion for the
charged patrticles.

(b) Obtain the constants of motion.

(c) Discuss small oscillations abofit= 0.

. Consider the Pauli spinor

«
v = :
<ﬁ>
Show that there is directiofa such that
anyY =

Findn in terms ofa andS. (& 's are Pauli spin matrices.)

However this is not true for spins grater thiaf2. Thus for a spin 1 system there are states
represented by a column matrix of the form

o= |8 oY)

which are not eigenstates 6tn with eigenvaluéh. (5‘ are3 x 3 matrices - the components
of S, 9, , So, andSs satisfy the usual angular momentum commutation relatiG@usistruct
an example of such a vector.
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Solutionsto the problems given in Vol. 4 No. 4 of Prayas

Solutions provided by: H.S. Mani

Problem 1: The vector potential is defined by the equatién: 6 x A and by applying Stokes
theorem we see that the loop integfald.dl = [ B.dS where the surface integral is over an area
with its boundary as the loop(with the contoure being in the counter clock-wise direction). This
is the magnetic flux enclosed by the closed leofhis is true irrespective of the size of the loop.
Consider now the case of a thin current carrying solenoigtd on earth, with flux through
it. The loopc surrounding the solenoid is taken to be circular, concentith solenoid, and has
radius R. Take R to be extremely large, say distance to thennidte above expression tells us that
as soon as the flux is changed on the earth, on the loop (at distance R away from the solenoid)
must change instantaneously. How is this consistent widtiapRelativity ?

Solution to Problem 1:

If the loop is very far away the flux enclosed by it zero as thetobthe magnetic lines which
come out of the solenoid return back and changes of the flugli©hly near the vicinity of the
solenoid. For the flux to change in the loop the size of therswteshould be of the order of the
loop.

Saying it differently, far away from the loop the contrikantiof any localised current distribu-
tion is given by dipole which falls a7§,§ and hence the vector potential falls ofvrégs wherer is
distance of the point of observation from the current distibn. Thus§ A.dl does not get any con-
tribution. Only the "radiating terms” from the time depentleurrent distribution ha$ behaviour
but this is retarded and reaches the loop after a time iftdetarmined by the speed of light.

Problem 2: Consider two one-dimensional coupled simple harmonicllagmis described by the

Hamiltonian ) ,
1
Hii+*+*(k1$%+k2$%+k121’1$2)

Find the energy levels of the system.( hereps, z1, x2) refer to the momenta and coordinates of
the two harmonic oscillators respectively, , mo are their respective masses.)

Solution to Problem 2:

Let
m 1 my, (1
Ty = (m*;) (4)551; Py = (#)(4)171
and
L AN G S P L S ¢
7 = (o0 W g = ()
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This ensuregr;, pi] = ih d;; withi,j = 1,2 and the Hamiltonian becomes

19

p/12 p/22 1o, ;2 ro
2\/mima 2\/mima + 2[ 11+ Rty Ry 1%
where
my.,_1 mq .1
k/ = _— 2 k‘ : k‘/ = —_—)2 k‘ M k‘/ = k
1 (m2) 15 K1 (m2) 2; K12 12

The potential energy term can be written as

K k1o /
/ / 1 2 Ty
Ty T2 o /
2 R L2

The eigenvalues of thg x 2 matrix are

(ki +k5) £ /(K] — k5)% + K53

Ky = 5

Since the diagonalization can be achieved by a unitaryfivemstion,

The hamiltonian becomes

PE+P 1

H = + 5[K+X12 + K_XJ3]

2m

wherem = ,/mims. We continue to haveX,;, P;| = ihdij, i, = 1,2
The energy levels are

E = aQiny +Q-n_+1)
whereQ. = \/% andn.. take integer valueg, 1,. . ...
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