




Editorial

Soft Power and Indian Science

It is distressing to note that none of the Indian universities and higher teaching Insti-

tutions like IITs and ISERs etc. figure in the list of 200 universities in the latest (2012) QS

World University Rankings. Many Asian countries have qualified for the distinction with

seven universities of China occupying the positions 44, 48, 89, 125, 168, 170 and 186; and

even Malaysia and Saudi Arabia capturing the spots 156 and 197 respectively. Anguish

has been expressed over this by many distinguished citizens in various fora, the most con-

spicuous being the public lament by the President of India in his convocation address at

the Utkal University, Bhubaneswar in last April. It becomes all the more intriguing and

poignant when one is reminded of the glorious heritage of India, with one of the earliest

civilization of the world of about 5000 years old, credited with gigantic contribution to vari-

ous fields of human knowledge spanning literature, philosophy, science, mathematics, music

and religion etc., possessing the unique distinction of unbroken continuity up to the modern

age. More strikingly, the vast expansion of our education system after independence with

the establishment of more than 600 universities, dozen of IITs, several IISERs, NISER, and

more than 100 of national laboratories and research institutes has earned it the reputation

of being the largest educational system in the world. Needless to mention that many of our

top ranking institutions are in no way less equipped in terms of infrastructure and facilities

compared to their counter parts in the western world.

The spectacular achievement of Indian science in the first half of twentieth century

before independence, through the works of C.V. Raman, J.C. Bose, M.N. Saha, H.J. Bhabha,

S.N. Bose et. al. carried out in a couple of Indian universities with meager facilities worth

the name, defies all sense of logic and reason, when contrasted with the current scenario.

How does one reconcile the present lack lustre and dismal performance of Indian universities

and higher institutions of learning not being able to occupy a single position in the list of

top 200 universities in the world? Presently, our country is an impoverished soft power

in science, although it can be considered a hard power as the above data suggests. The

present scientific culture is not empowering it to take a leading role in international science.

What is culture? The values, ethos, faith, thought and understanding collectively held by a

nation, people or community and their outward manifestation in the form of customs, ways

of working, taste, sensitivity and sensibility can perhaps qualify to be a concise definition.

At the core, there is an underlying passion guiding the thought and action of every member

of the community towards a goal without his apparent consciousness. Thus it is an invisible

force directly and imperceptibly operating on the minds of the individual in the collective

body and guiding the achievement, success and fulfillment in life.



The buzzword is collectivity. One may remember that, human civilization was born and

flourished when pre-historic man came together and participated in living, hunting, food

collecting, fighting against wild animals and vagaries of nature forming a society. Does India

have a viable scientific/academic community similar to those of western countries? Before

independence we had a small scientific community scattered in few universities and colleges.

However it was regarded as a part of British community which was most flourishing and

dominant at the world level. Britain was then the centre of gravity of international science

and the seat of biggest global power in the history. Needless to mention the Nobel Prize

of C. V. Raman in physics and that of Ravindranath Tagore in literature are considerably

supported by the common bond of fraternity of this larger community. The small Indian

community was undoubtedly imbued with its soft power. Unfortunately in the post inde-

pendence era, we have not been able to create a viable self-supporting community of our

own with the required passion, values, ethos and vision to inspire us, to play a dominant

role in international science although the nation has invested substantially in developing its

hard power. Feudalism and cronyism, the legacy of the past thousand years of history is

weighing heavily on our consciousness and polluting the educational and scientific sphere

of the country rendering them lack lusture. The specific example of the physics journal

PRAMANA can be cited here. It was started in mid 1960s with great hope to act as the

vehicle to carry Indian innovative ideas to the international arena. It has not succeeded

and the country has to depend upon the western journals for the same. In 1978, when

the author was visiting Niels Bohr Institute, Copenhagen, he had the pleasant experience

of meeting a senior physicist from Japan, who gave the following suggestions to improve

Indian science. “Firstly the manuscript submitted to journals for publication should be

neatly typed to avoid rejection, which was relevant then. Secondly India should have its

own journal with international circulation for publication of its new ideas, which would be

an uphill task for acceptance in western journals.” When I asked what they do in Japan,

he replied; “(1) We first publish our new ideas in Japanese journals. (2) Then we submit

the same to international conferences, which we attend with large number of colleagues to

defend it. (3) Finally we submit to international journals.

H. Yukawa was awarded Nobel Prize in 1949 for meson theory of nuclear force which

he published in the form of eight papers in Japanese journals. This practice has been

continuing in Japan with rich dividends. It is in fact a common feature with other advanced

nations. Before the advent of European Union, all its constituent countries small and big,

were nurturing their own journals for such contingency.

Soft power cannot be enhanced by investment of large amount of funds by the country

into science, nor by enactment of any law but by enlightened awareness and conscious effort

of nurturing the culture cited above by the science fraternity, more so by its leaders.

L. Satpathy
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Abstract. A few microseconds after the Big Bang, our Universe may have been dominated by a hitherto

undiscovered phase, called Quark-Gluon Plasma (QGP). The theory of strong interactions, Quantum Chromo

Dynamics (QCD),predicts a transition of the strongly interacting matter to Quark-Gluon Plasma at high tem-

peratures and/or densities. Heavy ion collision experiments at very high energies at Brookhaven National

Laboratory, New York and CERN, Geneva have the potential for producing the right conditions for such a

transition to occur. This introductory review of the subject is aimed at explaining what quark-gluon plasma

is, why it is important and how it can be created and studied in the laboratory. Unlike other interactions in

nature, the QCD coupling, a measure of its strength of interaction, can be very strong, thereby necessitating

new theoretical tools. QCD on a space-time lattice is the most reliable such toolavailable to us. Lattice QCD

on Supercomputers has enabled us to predict both the transition to QGP phase and the properties of the QGP

phase. The same techniques also predict a QCD critical point which experiments have begun actively to search

for. Indian efforts in both theoretical and experimental directions are very strong in these areas.

Communicated by: D.P. Roy

1. INTRODUCTION: WHAT IS THE BIG BANG ?

All ancient civilizations, including our own Indian civilization, have wondered about the origins of

the Universe we find ourselves in. Questions like what we, andthe world around us, are made of

and how our Universe began, i.e., if it did have a beginning, have consumed all of us. The common

answers we heard as children were that of“Panch Mahabhoota”and concepts like“Pralaya” etc.

Others, e.g., the Greek and other western civilizations also had similar ideas. It was, however, after

the great observational research work of the likes of Galileo and Kepler, and the laying of theoretical

foundations by people like Newton, that modern science slowly began dominating our methodology

to answer such questions. Amazingly, humongous progress has been made in coming closer to the

answers of such questions. Indeed, as Einstein once remarked, “what is really incomprehensible is

that our Universe is so comprehensible to us at all.” . Today we all are aware of molecules and
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atoms as the basic building blocks of the matter around us, including we ourselves. Similarly, we

have learnt about our Solar system and the fact that our Earthis a planet which revolves round

the Sun to give us the seasons we enjoy. Observations played acritical role in building up these

concepts. Galileo used the telescope to advance our knowledge of our Solar system. Microscopes

revealed to us the marvels of the otherwise invisible world of smaller objects. Essentially the same

idea of using telescopes and microscopes, but bigger and more powerful ones, have lead us further

beyond the above mentioned picture we learn in the school. Thus, we now know that our Sun is just

one star out of the many crores of stars in our galaxy, called Milky Way (Aakashgangain Marathi).

Our Universe has crores of such galaxies. One way to imagine all these mind-bogglingly huge

numbers, and the size of the Universe they imply, is to use thefact that light travels very fast, about

300, 000 kilometers in one second. Let us call this distance one light-second. The diameter of our

Earth is about 0.0425 light-seconds and our Sun is 499 light-seconds, i.e. 8.317 light-minutes away

from us. So we say light from our Sun takes about 8 minutes to reach us. The light from the closest

star takes about 4.22 years to reach us while it takes about 100,000 years to cross our disc shaped

Milky Way galaxy. The size of our Universe in these same unitsis 156 abja (billion) light years !

Surprisingly, we still can claim to understand in a simple way how the Universe began and evolved.

To be sure, many details are still missing and will need to be plugged in after further research. I will

narrate a part of the story of our Universe below which amazingly can perhaps be re-created in the

laboratory.

Figure 1. COBE measurement [2] of the cosmic microwave background radiation. Its

peak location measures the temperature of our Universe 380,000 years ago.
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Edwin Hubbles observation of stellar objects lead him to propounding a law for them: Distant

galaxies move away from us at a rate proportional to their distance (as measured by their red-shift).

This in turn led to a picture of our Universe as having been denser in the past than now. The Big

Bang theory of Universe accounts for this law by the assertion that our Universe was born in a hot,

giant explosion and subsequently cooled by expansion[1]. The strongest evidence to date for this

theory has come from the increasingly precise measurementsof the cosmic microwave background

radiation (CMBR), shown in the Figure 1. In spite of displaying the error bars on the observed data a

couple of hundred times more than actually are, one sees sucha perfect agreement of the theoretical

black body curve with the data such that the latter are totally invisible. In fact, this is the most

perfect observed black body radiation spectrum ever. It canbe used to determine the temperature of

our entire Universe today. Its perfection enables us to‘measure’ the rather low temperature of our

Universe to an incredible precision.

The temperature thus measured is of that epoch of the Universe at which electromagnetic radi-

ation decoupled from matter:T ≈ 3000 degK, red-shifted due to the expansion of our Universe to

T = 2.726 degK. Using the fluctuations in this background temperature, astronomers from WMAP

satellite experiment have even constructed the earliest picture of our Universe at about 380,000 years

of its age.

A natural consequence of the expansion is that the Universe was much hotter at earlier times.

If we understand well the physics of those early times, or at very high temperatures, then we will be

able to glance into still earlier times in the history of the Universe. Thus, e.g., our extensive knowl-

edge of the many nuclear reactions has enabled us to estimatethe compositions of our Universe in

terms of the basic elements. Its confirmation by observations has inspired confidence in our scenario

up to about the first three minutes of the age of the Universe. As we approach the big bang itself,

the next new landmark of physics is at about 10-20 s, corresponding to the formation of protons

and neutrons from a hitherto unobserved state of matter called Quark-Gluon Plasma[3]. At a few

microseconds after the Big Bang, our Universe may have been dominated by quark-gluon plasma

(QGP). Heavy ion collision experiments at very high energies at Brookhaven National Laboratory,

New York and now at the Large Hadron Collider in CERN, Geneva have the potential for producing

the right conditions for such a phase transition to occur. This introductory review of the subject

endeavours to explain what quark-gluon plasma is, why it is important and how it can be created and

studied in laboratory.

1.1 Why Re-Create the Big-Bang ?

The known interactions a century ago were Electromagnetism& Gravity and the then known ele-

mentary particles were electrons and atoms. We all learn about them in schools. Rutherford’s classic

scattering experiment, and its subsequent sophisticated versions in form of high energy particle ac-

celerators and detectors, yielded various new layers of building blocks. Thus, we now know that the

atoms are further made of electrons surrounding nuclei. Their numbers and properties decide the

property of the material such as conductors and insulators.The nucleus itself is made from proton,
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neutrons and pions. In turn, these particles are further made from even tinier quarks and gluons.

The best way to imagine them is to think of their sizes. A typical atom is a few Angstroms in size,

i.e, about one croreth part of the centimetre we use in daily life. A nucleus is roughly 10000 times

smaller than an atom, and a quark is further 1000 times smaller, almost the same size as that of an

electron, also called a lepton. Quarks and leptons are todayregarded as the elementary particles

from which our matter is made. Protons and neutrons make up the nuclei discovered by Rutherford,

while they themselves are made up of quarks: Proton(Neutron)consists of two u(d) type of quarks

and one d(u) quark while a pion, regarded as the key behind thenuclear force, is made of a u-quark

and d-antiquark.

Figure 2. Expected QCD phase diagram. We hope to establish the QCD critical point

and other features by better theoretical and experimental efforts in the future.

Over the years, strong and weak nuclear forces got added to the list of forces. A variety of vec-

tor bosons act as the carriers of these forces. The strengthsof these forces are substantially different.

While the electromagnetic interaction is two orders of magnitude smaller than the strong interac-

tions which bind quarks together into protons and neutrons,it is an order of magnitude larger than

the weak nuclear force. Massless gluons are the vector particles which carry the strong interaction

whereas massive W and Z-bosons (80 times mass of the proton) carry the weak nuclear force. Grav-

ity, the most familiar force is the weakest force being smaller by about 37 orders of magnitude than

the electromagnetic force. These become relevant in controlling the history of our Universe close to

the instant of the big bang (a billionth of a billionth of a billionth of a billionth of second after the

big bang) whereas the weak interaction played the dominant role a few nanoseconds after the Big

Bang. So far, we have no good idea of how to study matter at suchearly times. It is an interesting
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challenge to come up with an idea to do so. On the other hand, wedo have experimental tools to

produce matter that may have existed in our Universe a few microseconds after the Big Bang in a

laboratory. Furthermore, we also have a theory for the strong nuclear force, as well as a method of

computation for it, to derive the properties of matter undersuch conditions at that time, as we shall

discuss below.

2. PHASE DIAGRAM OF STRONG MATTER

2.1 Some results

Figure 3. Experimental results for the excess strangeness produced in nucleus-nucleus

collisions compared to lattice QCD results[4].

Quantum Chromo Dynamics (QCD) is the (gauge) theory of (strong) interactions of quarks and

gluons. The strength of this force as well as its complexity leads to a much richer structure: Quarks

are permanently confined to hadrons like proton and neutrons; a dynamical symmetry breaking

ensures that the quarks become massive due to interactions although free quarks are rather light etc.

These and many more such properties need to be obtained from QCD. While in the early days of

strong interactions, one attempted to understand these features based on models, we now have a
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powerful technique, called lattice field theory, to derive them from the basic theory. Indeed, fifty

years after the discovery of proton and neutron was it possible at all to calculate their masses and

their structure from this basic underlying theory QCD usinglattice field theory techniques. This

same lattice technique, as well as certain models, predict new phases of matter at high temperatures

and densities shown in the Figure 2. Quark-Gluon Plasma is one such new phase. It is expected to

be produced in Relativistic Heavy Ion Collisions as we shallsee in the next section. Its experimental

confirmation will test the predictions of the theory of strong interaction QCD in a new domain.

Moreover, since such temperatures are relevant to our Universe at a few microseconds after the big

bang, these collisions will permit us to study the physics ofsuch early times. The figure also shows

a depiction of the various new phases one expects to see in thetemperature-density phase diagram

of QCD. At high enough densities, such as those that exist in very dense stars, the novel phase of

colour superconductivity may manifest itself. Whether thiscan have any observable consequences

is a subject of active research as is the subject of investigating the entire phase structure from QCD.

Figure 4. QCD Critical point determinations from two computations with different

spatial volumes. The “freezeout curve’ is determined from the experimental results on

particle productions.

The lattice technique has led to a prediction that the usual nuclear matter, consisting of protons,

neutron, pions etc. undergoes a transition to the new Quark-Gluon plasma state at a temperature

Tc ≈ 160 MeV (about 2 trillion degrees Kelvin). It has also resulted in the equation of state and

many other properties, notably the Wroblewski Parameter, shown here on the right from our work
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[4]. It is a measure of the production of strange quark-antiquark pairs. It has been proposed as

a signal for the new phase, Quark-Gluon Plasma. As one sees inthe Figure 3, experiments agree

with theoretical (lattice QCD) estimates for the new state.Several other correlations for Heavy Ion

Physics have been predicted theoretically in the same way. For instance, lattice QCD also suggests

that strangeness is carried by quark-like objects, and supports the idea that flavour in general shows

quasi-quark behaviour. The flavour here is a characteristicthat separates different type of quarks.

Theoretical physicists, including us [5] have also attempted to look for the critical point in

the colourful artistic sketch above. We find it to be located at smaller densities than expected. As

shown in the Figure 4, our estimate is that the relativistic heavy ion collider (RHIC), if run at lower

colliding energy of about 20-30 GeV, can potentially discover it. Since these collisions take place

on a very short time scale, it is a challenging task to look forany signs/imprints of the QCD critical

point in their end products. While we shall discuss in more details the experimental aspects of

these collisions, let me remark that the basic physics to hunt the QCD critical point is the same as

that for usual critical points in the liquid-gas phase diagrams we learn in textbooks, namely critical

fluctuations. Any physical quantity displays thermal fluctuations. Indeed, many usual experiments

have to be done at very low temperatures to minimize them. In the vicinity of a phase transition or

equivalently a critical point the fluctuations become infinitely large. By observing their effects, one

hopes to pin down a critical point. Theorists [6] have used lattice techniques to make predictions

for such fluctuations. It will be exciting to stack them up against the upcoming experimental results

from RHIC and look for the signs of the QCD critical point.

3. HEAVY ION COLLISIONS

Let us now address the questions of where one can find these newphases and whether/how they can

be produced in a laboratory. As remarked in the beginning, our Universe was full of QGP at about

10-20 s after the the Big Bang. However, our best chance of studying the Quark-Gluon Plasma is in

re-creating that instant of Big Bang. It turns out that the necessary conditions for QGP production

in a laboratory are, 1) high energy density, 2) large system size and 3) production of many particles.

Heavy ion collisions at velocities99.5 − 99.995% that of light, possible at the colliders in CERN,

Geneva and BNL, New York, indeed meet these conditions. How this happens [1] is schematically

illustrated in the left panel of Figure 5. The fireball of QGP condenses into hadrons in extremely

short duration of almost an instant. One is forced to sift though the products of the collision in order

to establish that QGP was indeed formed. This needs clever detective work. As the right panel of

Figure 5 shows, the similarity of the cooling of this fireballproduced in heavy ion collisions with

the Early Universe can be exploited to devise tools for this task of looking for the new phase QGP.

One such tool is jet quenching. It is well known that rare highenergetic scatterings of quarks and

gluons in the colliding hadrons produce jets of particles. Such jets have been widely studied in

proton-proton and electron-positron collisions. If Quark-Gluon Plasma interacts with such a jet, it

causes a loss of energy due to multiple scatterings. Since these jets emerge back-to-back due to
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momentum conservation, only one of them will be seen with theother missing (or extinguished) due

to QGP. Such jet quenching has been observed rather extensively. Moreover, an on-off test has been

also performed by comparing the collisions of heavy-heavy nuclei, where QGP is expected to be

formed, with light-heavy or light-light, where it is not. The latter two were found to have both the

jets intact and furthermore these were always back-to-back, as expected. The jet got quenched only

in the case where QGP was expected to be formed.

Figure 5. Pictorial representation of heavy ion collisions explaining plasma formation

and evaporation (left) and possible signatures of the plasma (right).

Additional evidence for QGP has also been found by looking for the flow in transverse di-

rections which suggests that QGP flows as a perfect liquid with essentially no viscosity. Debye

screening, characteristic of plasma, can stop quarks from binding in to hadrons. Anomalous sup-

pression of heavy particles called,J/Ψ, has shown that such Debye screening may have been present

in the aftermath of heavy ion collisions. Thus one has tell-tale signs of the new phase Quark-Gluon

Plasma having been produced in these collisions.
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4. SUMMARY

Lattice QCD predicts new states of strongly interacting matter and is able to shed light on the prop-

erties of the Quark-Gluon plasma (QGP) phase. Our results onstrangeness production are consistent

with the expectation of formation of QGP in experiments. We found that correlations of quantum

numbers suggest QGP to have quark-like excitations. Heavy Ion Collisions in CERN Geneva, and

BNL, New York, have produced tell-tale signatures of QGP. Many surprises have already been pro-

duced by the data and more excitement is likely to come in the upcoming Large Hadron Collider in

CERN, Geneva.
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Abstract. Diffusion is an important phenomenon of scientific and technological interest and recently in-

vestigations on diffusion of many chemicals, nano-particles, proteins, drugs etc. in liquids is a thrust area of

research. This paper presents a study of temporal and spatial dependence of diffusion of zinc chloride in water

by laser beam deflection (LBD) method. When light is passed through a medium of varying refractive index

the path of the beam will deflect. A region of refractive index gradient (RIG) is created by carefully mixing

sample solution in water with a sharp boundary between the two solutions in a rectangular glass cell of volume

about 50cc. Diffusion of one liquid into the other lead to a concentration gradient, which results a spatially

and temporally varying RIG. Light from a He-Ne laser, after producinga fan of ray using a cylindrical lens, is

passed through the mixing zone in the liquids so that the refracted rays give the LBD pattern, which is collected

on a screen. The LBD pattern transformed to a Gaussian profile, the halfwidth at half maximum is related

to the diffusion coefficient. The value of diffusion coefficient of zinc chloride solution in water obtained is

1.92× 10
−4cm2/sec.The method can be used to determine the diffusion coefficient of many other materials.

Communicated by: K.C. Ajith Prasad

1. INTRODUCTION

The propagation of an optical beam through a medium characterized by spatial and temporal varia-

tion of refractive index is perhaps one of the most widely discussed topic in optical science. Charac-

teristics of such a medium will give valuable information regarding transport and optical properties

within the medium. When a light beam is passed through a material having uniform refractive in-

dex, the beam will travel along a straight path. If the mediumhas a varying refractive index, the

beam bends in the direction of greater refractive index. Such a deflection in liquid medium can be

observed, if there is a refractive index gradient (RIG) in the liquid medium.

2. RIG IN LIQUIDS

In liquids, refractive index gradient can be produced by mixing two miscible liquids of different

refractive indices or by mixing same liquids of different concentrations[1-3]. The index of refraction
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of a solution is approximately proportional to its concentration; hence the gradient of refractive index

is proportional to the gradient of concentration. Here the formation of RIG is mainly by diffusion

of one liquid to the other.Diffusion, the stochastic motionof particles, tends to establish a uniform

concentration. If a concentration gradient is establishedthen diffusion broadens and lowers the

concentration gradient over time. Consider two miscible fluids A and B superposed vertically in a

cell diffuse in course of time. At time t=0, we deposit a thicklayer of B on top of A. The lighter

liquid B is put over the heavier one A(Figure 1).The time evolution of density, between two miscible

liquids in the separating region give rise to a vertical gradient of refractive index.

3. LASER BEAM DEFLECTION IN LIQUIDS

Laser beam deflection (LBD) technique is an effective and sensitive method for studying the re-

fractive index gradient created in a medium by various causes like temperature and concentration

variation. In this method a laser beam with a Gaussian profileis allowed to pass through the inter-

face region, in which the refractive index gradient has beencreated by diffusion of liquid into water.

The amount of deflection suffered by the laser beam is a directmeasure of the RIG that has been

caused in the defined region and hence yields the value of the parameters of the physical processes

that creates the RIG. The method can be used to study the variation of the diffusion coefficient with

concentration in liquid. The high accuracy is a result of thefact that no sampling is required and

that a large number of transient measurements can be made. InLBD it is possible to determine the

diffusing properties in the diffusing medium simultaneously at various special points. This will help

to identify the presence of any spatial anisotropy in the medium. The successful determination of

diffusion coefficient demonstrates that this technique could be used in practice for the measurement

of diffusivity in many chemically and biologically important solutions including nano fluids.

In the case of electrolytic solutions, diffusion co-efficient (D) depends on concentration. The

diffusion equation can be written as [4,5],

∂c

∂t
= D(c)

∂2c

∂y2
(1)

For low concentration, which corresponds to concentrationindependent case, it can be treated this

equation for the following initial conditions, at time t=0 satisfies a step like concentration as,

c = c0 Fory < 0

c = 0 Fory > 0

A solution with above distribution can be realized by carefully taking a salt solution of higher

refractive index at a known concentrationc0 in the regiony < 0 and water lower refractive index

for y > 0. The diffusion of solution in water will develop a gradient RIG formation as a result of

concentration variation. As time evolves the concentration gradient disappears and this will result in

the broadening of the Gaussian function. Taking above step like initial concentration the variation
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of concentration at particular intervals is given by [6]
(

dc

dy

)

t

= −
c0

√
4πDt

exp

(

−y2

4Dt

)

(2)

This is a Gaussian function and will be of the same shape traced out by the deflected beam at the

boundary. The half width of the curve at a maximum ofdc/dy is measured for a particular time.

A graph is plotted betweeny2
1/2 and t the slope of which is4Dloge2 and hence, the diffusion

coefficientD can be calculated using

D =
y2
1/2

4tloge2
(3)

4. EXPERIMENTAL SET-UP

Figure 1. Experimental arrangement for LBD

The basic theory of the method is the deflection of light beam when it passes through a medium

having concentration gradient. Rectangular cell is placedat a suitable height. A glass rod about

0.5cm radius mounted at45o with respect to the vertical can be used in place of cylindrical lens

so as to get a large range of fanned light from a He-Ne laser of wavelength 632.8nm. Take 20ml

of water and pipette 20ml of experimental solution in to cellwith no random region separating the

liquids. The laser beam is deflected at the interface and the deflected beam can be obtained on the

screen. The emerging fan of rays then passes through the rectangular diffusion cell in which the

two liquids were diffusing into each other across a horizontal miscible interface and allow falling
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Figure 2. LBD pattern ofZnCl2 in water at different time (bottom t=0 second then

after 30 minutes).

diagonally on the screen. In the absence of liquid in the cell, the cylindrical lens produces a straight

line image on a screen kept nearly 1.5m away from the cell. Thestraight line image will be modified

when one takes the solution in the cell with concentration gradient due to deflection of light beam

resulting from local variation of density and hence the refractive index.Adjust distance between

the cell and screen to about 1.5m. The experimental arrangement is shown in Figure 1. Adjust the

inclination of the glass road, if necessary, to set this lineat45o to the vertical. To start the experiment

pours the lighter liquid (water) in to the cell and equal amount of denser liquid (ZnCl2) is pipette

to the bottom of the cell, in order to minimize the initial mixing of the liquid. The fanned out laser

beam is deflected at the interface and the image of the deflected beam is obtained on the screen kept

at a distance from the cell. The image of the scattered beam istraced out on a graph paper(Figure

2). The observations are made for various timet and concentrations. The experimental curves of

dc/dy versusy obtained at various time intervals from which the half widthof the curve at a half

maximum is found. It is then plotted (Figure 3) against time and the slope is evaluated andD is

calculated using equation (3).

5. RESULTS AND DISCUSSIONS

Studies on diffusion inZnCl2 solution were carried out by LBD technique with concentrations

8.177g/20ml. In the present work, laser beam deflection inZnCl2 solution is investigated. The dif-

fusion coefficient ofZnCl2 solution in water and the shift of the LBD peaks are studied. The value
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Figure 3. Plot ofy2

1/2 as a function oft

of diffusion coefficient ofZnCl2 solution is obtained asD=1.92 × 10−4cm2/sec. The maximum

deflection point shifts towards the left where the concentration gradient is the highest. The area

enclosed by the LBD image decreases as time progresses and the deflection suffered by the laser

beam in the solution varies exponentially with time which can be utilized to investigate the diffusion

mechanism of the solution.
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1. INTRODUCTION

Simple mechanical models often provide insights into complicated physical processes in nature.

Consider, for example, phase transition of ferromagnets above the Curie temperature. Below the

Curie temperature, within the material, neighbouring magnetic spins are aligned parallel. As we

increase the temperature towards the Curie point, the alignment (magnetization) within each domain

decreases. Above the Curie temperature, the local magneticdipoles are randomly oriented and

therefore the material behaves as a paramagnet. Theoretical understanding of this phenomenon,

including the system’s behaviour at the Curie point requires the use of sophisticated techniques

of field theory and renormalization group. One may inquire ifthere exists simple models which

capture, at-least qualitatively, some essential featuresof this transition.

Indeed in [1], such a model was analyzed. It consists of a beadof massm moving freely along

a vertical loop. The loop is then made to rotate about a vertical axis passing through its center. It can

be shown that if the loop rotates with a very small angular velocityω, the bead stays at the bottom of

the loop. However, as the angular velocity is increased, beyond a critical velocityωc, minimization

of the potential energy requires the bead to sit at a non-zeroθ (θ is shown in the figure). As we

further increaseω, θ increases, reachingπ/2 with ω → ∞. Note that the symmetryθ → −θ, which

was present initially, is spontaneously broken forω > ωc by the equilibrium position of the bead.

Similarities with ferromagnetic transition is now immediate. While the role of the temperature is

played by the angular velocityω, the position of the beadθ behaves similar to the order parameter,

magnetization. Hence, the paramagnetic phase is analogousto theω < ωc phase of the model. In

literature this phenomena is known as a bifurcation. When a specific physical parameter crosses a

threshold value, the system generally organizes itself to anew stable state causing a bifurcation from

the original one.

What happens in ferromagnetic material if we quench the temperature from a low value to

a value above the Curie temperature? Since temperature is tuned very fast, immediately after the

quench, the system will still be in its unstable ferromagnetic state. However, slowly with time, the
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system will roll down to the stable paramagnetic state. We can ask similar question within the model

we are discussing. Suppose we quench the angular velocity from a very low value to a higher one

(> ωc), we should be able to find a time-dependent rolling down solution which will interpolate

betweenθ = 0 and aθ non-zero value. Indeed in [2], such a solution was explicitly constructed.

In this paper, we discuss the same model when it is rotated about a vertical axisdoes not pass

through the center. This is explicitly shown in Figure 1. As analyzed in [1], this model depicts

some features of ferromagnetic material in an external magnetic field. Here the rotational symmetry

is broken by external field itself. Similarly, by choosing off-center axis of rotation, we break the

θ → −θ symmetry in our model right from the beginning. We will describe the model in brief in

the next section. Our primary aim of this work is to constructexplicit rolling down solution as we

suddenly shift the axis of rotation of the loop parallely. This is what we discuss in the third section.

The last section summarizes the results.

mg

A

O

Ω

R

Figure 1. A vertical loop carrying a movable friction-lees bead is rotating about an

off-center vertical axis, at a distanceA from the center, with a constant frequencyω.

The positive values ofA andθ are shown by the horizontal axis at the bottom.

2. THE LAGRANGIAN AND THE EQUATION OF MOTION

As discussed in [1], the model has an effective Lagrangian description. Let us assume that at any

instant of time the mass is at a positionθ(t) The Lagrangian then reads [1]

L = kinetic energy − potential energy. (1)
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While the kinetic energy is given by

KE =
1

2
mR2θ̇2 +

1

2
mω2(Rsin2 θ +A)2, (2)

the potential energy is

PE = −mgR cos θ. (3)

Therefore the total Lagrangian is

L =
1

2
mR2θ̇2 +

1

2
mω2(Rsin2 θ +A)2 +mgR cos θ. (4)

This allows us to have a description of the system in terms of an effective potential

V ′ = −
1

2
mω2(Rsin2 θ +A)2 −mgR cos θ. (5)

Or, in other words, we can study the equilibrium position of the bead by analyzing the minima of

the potential

V =
V ′

mgR
= −cosθ −

1

2
(sinθ + α)2, (6)

where we have defined

α =
A

R
, and β =

ω2R

g
. (7)

Note that, because of the presence ofα, the potential does not have aθ → −θ symmetry.

In the following, we will study the effective potential in the rangeβ > 1 and for all positiveα.

Notice that, forα = 0, it has a maximum atθ = 0 with two symmetric minima at

θ0 = ± cos−1(1/β). (8)

Let the bead be in one of the degenerate minima. We choose the negative one. Now we increase

α. This means that, in Figure (1), we move the axis of rotation to the right. For very largeα, we

can neglect thesinθ term in the potential. It then easily follows that there is only one minimum at

approximately

θ = tan−1(βα) (9)

So at this highα, the bead must be resting at a positiveθ value. To find at what value ofα, the

transition from negative to positiveθ occurred, it is instructive to search if there is an inflection point

associated with the effective potential. Indeed there is one and that can be found by setting first and

secondθ derivative to zero. It occurs at

α = αc = (1− β−2/3)3/2, cosθc =
1

β1/3
(10)
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Figure 2. Bifurcation Diagram for the model. The dotted lines show the points of

unstable equilibrium; whereas the solid lines represent points of stable equilibrium. As

soon asα is slightly decreased from the maximum (call itαc) – which is the transition

point with saddle-point bifurcation –, the particle sitting on the left false vacua, should

slip down to the true vacuum at the right.

The dependence of equilibrium angle on alpha is shown in Figure 2 by a bifurcation diagram [4].

Further, the behaviour of the potential is shown in Figure 3.

Now we would like to address the following question. Suppose, for a fixedβ, we suddenly

changeα from a value less thenαc to a value greater thanαc, how is the bead going to relax from

a wrong ground state (at negativeθ) to the right one (in positiveθ)? To address this question, we

need to find out a rolling down solution ofθ as a function oftime. We address this issue in the next

section.

3. INTERPOLATING SOLUTION

We start with by writing down the Euler-Lagrange equation that follows from (4). This is given by

d2θ

dt2
− ω2 sinθ cosθ −

ω2A

R
cosθ +

g

R
sinθ = 0 (11)

By definingt̃ = ωt, we can re-write the equation as

d2θ

dt̃2
− sinθ cosθ − α cosθ +

1

β
sinθ = 0. (12)

Integrating this equation once, we get

1

2

(dθ

dt̃

)2

+
1

4
cos2θ − α sinθ −

1

β
cosθ = c, (13)
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Figure 3. Effective potential for fixedβ = 3 and for variousα. For

α = 0 (dashed line), there are degenerate minima. The solid line is for

α = αc = (1 − β−2/3)3/2 = .374 which shows the inflection point arising from

the left minimum. Forα = .5, single minimum is shown by the dotted line.

where, c is an integration constant to be determined by the boundary condition. Note that the above

equation is just a statement of energy conservation.

To this end, let us consider the following situation. Suppose we start withα = 0 andβ > 1.

The particle is sitting in one of the degenerate minima givenby

θ+ = cos−1

( 1

β

)

, or θ
−
= 2π − cos−1

( 1

β

)

. (14)

Let us take the second one. Now we suddenly increaseα to a value greater thanαc. Sinceθ
−

is

no longer a minimum of the effective potential, particle is expected to roll down from its unstable

position with zero initial velocity. This condition allow us to fix the constant appearing in (13).

dθ

dt̃
= 0, at θ = θ

−
, (15)

With this value of the constant, one can search for a time dependent solution forθ simply by in-

tegrating (13). This exercise can be performed exactly, butthe solution is a bit messy. We rather

illustrate here with specific values ofβ andα. Let us chooseβ = 3. Using (10), we getαc = .3742.

We therefore takeα = .375. With this the boundary condition can be solved to getc = 0.0472.

Now the equation (13) can be re-written as
∫

dθ
√

2α sinθ + 2/β cosθ − cos2θ/2 + 2× .0472
= ±

∫

dt̃. (16)
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Figure 4. Behaviour ofθ(t̃) with t̃ for α = .375 whereαc = .3742. We have set

β = 3. The figure, which would correspond to a bounced like solution in Euclidean

time, is seen as an interpolating one in real time.

The integral on the left hand side of (16) can be solved. However, but again the result is not

very illuminating. We instead represent the solution graphically. This is shown in Figure 4.

4. SUMMARY

To conclude, in this paper, we reviewed a toy model which captures certain qualitative behaviour

of a ferromagnet as we tune its temperature in the presence ofan external magnetic filed. We then

constructed a time-dependent classical solution representing its relaxation from false to a true ground

state after the model is appropriately quenched.
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Abstract. In this article, we present an alternative derivation of the Thomas precession effect. The derivation

follows from a method of generalization of inertial forces to relativistic domain given by H. Nikolíc. The

basic method employed is to sum infinitesimal Lorentz transformations to arrive at the metric tensor for an

accelerating observer (in flat space-time). Using this in the geodesic equation gives the equation of motion of

a free particle in a (non inertial) accelerated frame in flat space-time. Thisequation has the correct Newtonian

limit and gives the desired expression for the Thomas precession.

Communicated by: D.P. Roy

1. INTRODUCTION

In Newtonian mechanics, the inertial forces (i.e. forces ofkinematic origin), acting on a particle for

a non-inertial observer are well known. However, Newtonianmechanics is valid only in the limit

of speeds low compared to the speed of light c. It is a limitingcase of Einstein’s special relativistic

mechanics. So, a natural question to ask is how the inertial forces of Newtonian mechanics are

generalized to the relativistic domain. This question is quite non-trivial and in this article, we present

in detail one approach due to H. Nikolić (2004) to arrive at the relativistic form of inertial forces

that in the low speed limit reduce to the known results of Newtonian mechanics. In addition, this

generalization reproduces the well known relativistic effect, namely Thomas precession, and thus

provides an independent way of arriving at this effect.

This article is organized as follows: in section 2, a summaryof inertial forces in Newtonian

mechanics is given. Section 3 is devoted to obtain the metrictensor for an accelerating observer in

flat space-time. In section 4, we use the metric tensor to obtain the equation of motion of a free

particle as seen by the accelerating observer. This equation, as expected, has the correct Newtonian

limit. Further, it also contain terms, analogous to the inertial forces for a rotating frame in Newtonian

mechanics, with an angular velocity that is the familiar Thomas precession velocity.

∗mritunjay@cbs.ac.in
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2. INERTIAL FORCES IN NEWTONIAN MECHANICS

As we know, Newton’s second law, namely~F = m~a (where ~F is a force due to some physical

agency) holds true only in inertial frames (defined as a co-ordinate system in which a particle free

from all physical interactions moves with a constant velocity). This is the simplest form of equation

of motion of a particle. (This is true for any physical law. The laws of nature take their simplest

mathematical form in inertial frames). However, if we want to analyze the motion of the same

particle from the point of view of a non-inertial observer, anumber of additional terms arise and the

equation~F = m~a gets modified. The origin of these terms is purely kinematical. These additional

terms are proportional to inertial mass and are variously called inertial forces, pseudo forces, frame

dependent forces, etc.

In Newtonian mechanics, the equation of motion of a free particle for a non inertial observer is

well known and is given by

~A ′ = −~a− ~ω ×
(

~ω × ~x ′

)

−2
(

~ω × ~v ′

)

−~̇ω × ~x ′ (1)

where ~A ′ is the acceleration of the particle as measured by the non inertial observer.~a and~ω are

the acceleration and rotational velocity respectively of the non inertial observer.~v′ and~x′ are the

velocity and position vector respectively of the particle with respect to the non inertial observer.

The second term on the right hand side, in the above equation,is known as thecentrifugal term

while the third term is known as theCoriolis term. The third term is present only when the particle

has a non-zero velocity with respect to the the non-inertialobserver. The last term vanishes if~ω is

constant.

In the present article, we give the relativistic generalization of equation (1) for the case of pure

translational acceleration, i.e. for~ω = 0. The general case is considerably more involved and is

treated in references [1] and [2]. See also reference [5] which provides this derivation in much

detail.

3. METRIC TENSOR OF THE ACCELERATING OBSERVER

We consider an inertial frame S and a non inertial frameS′ which has translational acceleration~a

with respect to the inertial frame S. An observer is located at the origin of the non inertial frame.

In the approach considered here [1], the calculation of the metric tensor is valid only for the non

inertial observer at the origin (this will be clear subsequently in the calculation). For obtaining the

equation of motion of a free particle with respect to a non inertial observer however, this is all we

require.

The (covariant) metric tensor for an observer in S is the standard metric of special relativity

given by

gµν = ηµν = diag(1,−1,−1,−1) (2)
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We use the convention that the Greek indices (µ, ν etc.) run over0, 1, 2, 3 while the roman indices

(i, j etc.) run over1, 2, 3 and denote the three spatial components of a vector.

If g′µν is the metric tensor for the non inertial observer, the two are related by

g′µν =
∂xσ

∂x′µ

∂xρ

∂x′ν
gσρ (3)

Thus, to computeg′µν , we need the relationship betweenxµ andx′µ i.e. we require co-ordinate

transformation equation between these two frames. This transformation is not the familiar Lorentz

transformation, which is valid only for two inertial observers in uniform relative motion. Observer

in S ′ is accelerating. So we need to generalize the Lorentz transformation. This is done in the next

subsection.

3.1 Generalized Lorentz Transformation

The usual Lorentz transformation between two inertial frames related by a constant relative velocity

~u is given by

xo = γ
(

x ′o +
~u · ~x ′

c2
)

and xi = x ′i + (γ − 1)~u·~x
′

u2 ui + γuix ′o (4)

where a given event has co-ordinates(xo, xi) with respect to S and co-ordinates(x ′o, x ′i) with

respect toS′ andγ = 1
√

1−
u2

c2

.

Equation (4) gives the Lorentz transformation in which the velocity ~u of S′ relative to S is

along an arbitrary direction (the axes of S andS′ are however parallel).

Let,xµ = fµ(x ′o, ~x ′; ~u) denote the above Lorentz transformation for constant relative velocity

~u.

Transition to the non inertial frameS ′ introduces a time dependent velocity:~u → ~u(xo) =

~u(x′o, x′i) = ~u(x′o) (sincex′i = 0 for the observer at origin) in which case transformation between

S andS ′ is not given by equation (4). However, the required transformation between S andS ′ can

be obtained by summing the infinitesimal Lorentz transformation given by the differential

dxµ =

(

∂fµ

∂x′ν

)

dx′ν = fµ
ν (x

′o, ~x ′; ~u)dx′ν (5)

where,

fµ
ν =

(

∂fµ

∂x′ν

)

~u=constant

Using equation (4), we obtain

fo
o = γ, fo

j =
−γuj

c
, f i

o =
γui

c
, and f i

j = δij +
1− γ

u2
uiuj

Student Journal of Physics, Vol. 4, No. 6, Jan-March, 2013 227



Mritunjay Kumar Verma

We can integrate equation (5) to get the relation betweenxµ andx′µ. We integrate the equation

from x′µ = (0, 0) to x′µ = (x′o, x′j). This is done as follows

xµ =

∫ x′o

o

fµ
o (x

′′o, o; ~u(x′′o))dx′′o +

∫

C

fµ
k (x

′o, ~x′; ~u(x′o))dx′k (6)

Sincedxµ is an exact differential, the integration will give the sameanswer whatever path we

choose between the end points. So, for convenience we choosea path which has two segments.

Along the first segment,x′i = 0, and only temporal componentx′o varies from 0 tox′o. Along

the second segment, we takex′o = constant and vary space variablex′k from 0 to x′j along an

arbitrary spatial curve C. The advantage of choosing this path of two segments is that time and

space integrations separate out and integration of equation (5) becomes tractable.

Using equation (6), and the fact that spatial integration varies fromx′k = 0 to x′k = x′j we

obtain

xµ +∆xµ =

∫

x′o +∆x′o

0

fµ
o (x

′′o, 0; ~u(x′′o))dx′′o

+

∫

x′j +∆x′j

0

fµ
k

(

x′o +∆x′o, ~x′; ~u(x′o +∆x′o)
)

dx′k (7)

We can expand various terms in second integral in the right hand side in a Taylor series to first order

as

fµ
k (x

′o +∆x′o, ~x′; ~u(x′o+ ∆x′o)) ≈ fµ
k (x

′o, ~x′; ~u(x′o)) +
∂fµ

k (x
′o, ~x′; ~u(x′o))

∂ul
∆ul

= fµ
k (x

′o, ~x′; ~u(x′o)) +
∂fµ

k (x
′o, ~x′; ~u(x′o))

∂ul

∂ul

∂x′o
∆x′o

where we have taken into account the fact thatfµ
k does not depend explicitly on time variablex′o

but depends only implicitly through~u.

Noting the limit points in equation (6), we subtract the equation (6) from (7). In the limit

∆x′o,∆x′i → 0, we obtain

∆xµ = fµ
o ∆x′o +

∂ul

∂x′o
x′j

∂fµ
j

∂ul
∆x′o + fµ

j ∆x′j

We note from the above equation that time coordinates ofS and theS′ observer at the origin

(so thatx′i =0) are related byt = γt′ and hence for the observer at the origin,

∂ul

∂x′o
=

1

c

∂ul

∂t′
=

1

c

∂ul

∂t

∂t

∂t′
=

γ

c

∂ul

∂t
=

γ

c
al

whereal = ∂ul

∂t
is the acceleration of theS ′ observer with respect to the S frame. Using this, we

obtain

∆xµ = fµ
o ∆x′o +

γ

c
alx′j

∂fµ
j

∂ul
∆x′o + fµ

j ∆x′j (8)
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This gives the desired co-ordinate relationship between the two frames. This can be used to compute

the various partial derivatives needed to compute the metric tensor in equation (3). The final results

are given below

1.
∂xo

∂x′j
= −

γ

c
uj

2.
∂xi

∂x′j
= δij +

1− γ

u2
uiuj (9)

3.
∂xo

∂x′o
= γ −

γ2

c2
aix

′i +
γ4

c4
akukuix

′i

4.
∂xk

∂x′o
=

γ

c
uk −

γ(γ − 1)

u2c
akujx

′j −
γ(γ − 1)

u2c
aju

kx′j

+
γ4

u2c3
alulu

kujx
′j −

2γ(γ − 1)

u4c
alulu

kujx
′j

3.2 Metric Tensor

Metric tensor forS′ observer can now be computed using equation (3) and the various partial deriva-

tives as computed in previous subsection. The calculationsare straightforward but rather lengthy, so

only the results are given here.

1. g′ij = −δij

2. g′oj = g′jo =
γ

c
(~ωT × ~x′)j

3. g′oo =
(

1 +
~a′ · ~x′

c2
)2
−
γ2

c2
(~ωT × ~x′) · (~ωT × ~x′) (10)

where,a′i = γ2[ai + 1

u2 (γ − 1)(~u · ~a)ui] and(ωT)i = 1

2u2 (γ − 1)ǫijk(u
jak − ukaj) ~ωT =

γ−1

u2 (~u × ~a) will be later interpreted as the Thomas precession frequency. It is clear that the metric

given above reduces to the usual inertial frame metric dig(1,-1,-1,-1) when acceleration is zero.

Note that for the special case when~a is parallel to~u, ~ωT = 0 and the metric above coincides

with the well known metric for a linearly accelerated observer (see, for example, reference [4])

ds2 = c2
(

1 +
~a′ · ~x′

c2
)2
dt2 − dx2 − dy2 − dz2

Here~a′ is the proper acceleration of the non inertial observer. It is straightforward to show that this

interpretation of~a′ is true even when~a is not parallel to~u [2].
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4. GEODESIC EQUATION

Geodesic equation describes the path followed by a particlewhich is moving freely. One can think

of the geodesic equation as the generalization of Netwon’s force free motiond
2xi

dt2
= 0. Unlike

Newton’s equation, geodesic equation is valid for a generalcoordinate system not necessarily an

inertial one. Various terms appearing in the equation of motion can be interpreted as the inertial

forces acting on the particle.

The geodesic equation in any co-ordinate system for a particle, moving freely, is given by

d2xµ

dτ2
+ Γµ

σρ

dxσ

dτ

dxρ

dτ
= 0 (11)

wherexµ is the space-time co-ordinate of the particle with respect to the observer andτ is the

proper time measured by a clock moving with the particle (τ is used as a parameter to parametrize

the curve in space-time (world-line) along which the particle is moving). Γµ
σρ is known as the

Christoffel symbol of second kind.

Now, τ is the time measured by the clock moving with the particle. But, we want to find the

equation of motion as seen by the non inertial observer. Acceleration of the particle can be obtained

using the spatial part of geodesic equation. So, we need to write the spatial components of geodesic

equation in terms of time measured byS′ observer (i.e.t′ = x′o

c
). This task is achieved by using

temporal component of geodesic equation to eliminateτ for t′. This is done in the next subsection.

4.1 Acceleration of the Particle in Non Inertial Frame

Our goal is to find an expression ford
2x′i

dt′2
. We proceed as follow:

dx′µ

dτ
=

dx′µ

dt′
dt′

dτ

⇒
d2x′µ

dτ2
=

d2x′µ

dt′2

(

dt′

dτ

)2

+
dx′µ

dt′
d2t′

dτ2

Using this in geodesic equation, we obtain for temporal component

d2t′

dτ2

(

dt′

dτ

)

−2

= −
1

c
Γo
σρ

dx′σ

dt′
dx′ρ

dt′

and for spatial component

d2x′i

dt′2

(

dt′

dτ

)

−2

= −
dx′i

dt

d2t′

dτ2

(

dt′

dτ

)

−2

−Γi
σρ

dx′σ

dt′
dx′ρ

dt′

Eliminating d2t′

dτ2

(

dt′

dτ

)

−2

by making use of temporal component, we obtain

d2x′i

dt′2
= −

dx′i

dt

[

−
1

c
Γo
σρ

dx′σ

dt′
dx′ρ

dt′

]

−Γi
σρ

dx′σ

dt′
dx′ρ

dt′
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Expanding various summation terms and making some rearrangement, we finally obtain the desired

result

d2x′i

dt′2
=

[

1

c
Γ o
jk

dx′j

dt′
dx′k

dt′
+2Γ o

oj

dx′j

dt′
+cΓ o

oo

]

dx′i

dt′
−

[

Γ i
jk

dx′j

dt′
dx′k

dt′
+2cΓ i

oj

dx′j

dt′
+c2Γ i

oo

]

(12)

Next, we need to compute various Christoffel symbols for themetric obtained earlier and insert in

above equation.

4.2 Computation of Christoffel Symbols

Christoffel symbols are defined as

Γµ
σρ =

1

2
gµλ

{

∂gρλ
∂x′σ

+
∂gσλ
∂x′ρ

−
∂gσρ
∂x′λ

}

. (13)

Here onwards we use unprimedgµν to representg′µν . With that,gµλ is the contravariant metric

tensor given by the inverse of matrix[gµν ] and is computed to be

[gµν ] =
1

g



















-1 -g01 -g02 -g03

-g10 g00 + g2
02
+ g2

03
-g01g02 -g01g03

-g20 -g01g02 g00 + g2
01
+ g2

03
-g02g03

-g30 -g01g03 -g02g03 g00 + g2
01
+ g2

02



















where, g = det[gµν ] = -g00-g201
-g2

02
-g2

03
= −

(

1 + ~a′
·~x′

c2

)2
.

Using the definition (13) and the expression of the metric tensor components (contravariant as

well covariant), different Christoffel symbols are computed to be

1. Γ i
jk = 0

2. Γ o
jk = 0

3. Γ o
jo = 1

c2

(

1 + ~a′
·~x′

c2

)

−1
a′j

4. Γ i
jo = 1

c

[

−γǫjikω
k
T + γ

c2

(

1 + ~a′
·~x′

c2

)

−1
a′j(~ωT × ~x′)i

]

5. Γ o
oo = 1

c3

(

1 + ~a′
·~x′

c2

)

−1

[

−γ(~ωT × ~x′) · ~a′ + ~̇a′ · ~x′

]

6. Γ i
oo = 1

c2

[

−γ(~̇ωT × ~x′)i + γ2{~ωT × (~ωT × ~x′)}i +
(

1 + ~a′
·~x′

c2

)

a′i

+ γ
c2

(

1 + ~a′
·~x′

c2

)

−1
(~ωT × ~x′)i

{

−γ(~ωT × ~x′) · ~a′ + ~̇a′ · ~x′

}

]
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4.3 Generalization of Inertial Forces and Thomas Precession

Various Christoffel symbols computed in previous subsection can now be inserted in equation (12)

to obtain the acceleration of the particle in terms of dynamical quantities. The final result turns out

to be

A′i =
d2x′i

dt′2
= −

(

1 +
~a′ · ~x′

c2

)

−1

a′i +
(

˙γ ~ωT × ~x′

)i

+2γ
(

~ωT × ~v′
)i
−γ2

{

~ωT × (~ωT × ~x′)
}i

+
1

c2

(

1 +
~a′ · ~x′

c2

)

−1[

2
(

~v′ − γ~ωT × ~x′

)

·~a′ +
(

~a′ − γ~ωT × ~a′
)

·~x′

]

[

v′i − γ
(

~ωT × ~x′

)i
]

where,v′i = dx′i

dt′
is the velocity of the particle as measured in the non inertial frame. This is

the general equation of motion of a free particle as seen by a non inertial accelerating observer.

The various terms multiplied by the inertial mass give the generalized inertial forces in relativistic

domain.

It can be noted that the new generalized equation contains many complicated terms. The most

important point is that though we took the frame to be accelerating only translationally with respect

to the frame S, the inertial forces appearing in the equationare such as if the frame is rotating

with angular velocity− ~ωT (to see this, note the second, third and fourth terms in aboveequation and

compare with equation (1). Also note that these are the only~ωT containing terms surviving upto order
u2

c2
). Thus, a free particle (which moves uniformly in a straightline in the inertial frame S) in the

accelerated frame will experience inertial forces analogous to those experienced in a non relativistic

rotating frame, corresponding to a rotation of− ~ωT. This effect is present only when the velocity

and the acceleration of the accelerating observer are not collinear (see the definition of~ωT just below

equation (10)). Provided~ωT is non zero, a spin vector in the rest frame precess with respect to the

inertial frame S with precessional velocity~ωT. This effect is known as Thomas precession and is

patently a special relativistic effect. The standard derivation of this effect is based on the fact that

two Lorentz boosts in arbitrary directions do not commute and are equivalent to another boost plus a

rotation [3]. It is interesting to see that a completely different approach, as described in this article,

reproduces the same effect.

4.4 Newtonian limit of equation of motion

In the Newtonian limit,c → ∞ andγ → 1. Various quantities take the limiting form

~ωT =
γ − 1

u2
(~a× ~u) → 0

~a′ = γ2
[

~a+
γ − 1

u2
(~u · ~a)~u

]

→ ~a
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Also, all terms containing1
c2

drop out. Hence, in the Newtonian limit, acceleration of theparticle in

non-inertial frame takes the form-

~A ′ = −~a

This matches with the Newtonian result (1) for the case when rotational velocity~ω of the non inertial

observer is zero.

5. CONCLUSION

By summing infinitesimal Lorentz transformations, we arrived at the metric tensor for an accelerated

observer, which led to the equation of motion of a free particle for the accelerated observer. The

equation reduces to the correct Newtonian result in the appropriate limit. Moreover, it provides an

independent way to arrive at theThomas precession effect.
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PROBLEMS IN PHYSICS

Readers are invited to submit the solutions of the problems in this section within two months. Correct

solutions, along with the names of the senders, will be published in the alternate issues. Solutions

should be sent to: H.S. Mani, c/o A.M. Srivastava, Institute of Physics, Bhubaneswar, 751005;

e-mail: ajit@iopb.res.in

Communicated by H.S. Mani

1. Consider an electric dipole made of two particles each of massm and chargesQ and−Q

connected by a massless rod of length2a with the centre of the rod fixed at the origin and the

rod is free to rotate about the centre.

There is a uniform magnetic field~B = Bk̂ along thez−axis.

(a) Using spherical polar co-ordinates(r = a, θ, φ), obtain the equations of motion for the

charged particles.

(b) Obtain the constants of motion.

(c) Discuss small oscillations aboutθ = 0.

2. Consider the Pauli spinor

ψ =

(

α

β

)

.

Show that there is direction̂n such that

~σ.n̂ ψ = ψ

Find n̂ in terms ofα andβ. ( ~σ ’s are Pauli spin matrices.)

However this is not true for spins grater thanh̄/2. Thus for a spin 1 system there are statesφ,

represented by a column matrix of the form

φ =







α

β

γ






(1)

which are not eigenstates of~S.n̂ with eigenvaluēh. (~S are3 × 3 matrices - the components

of ~S, S1 , S2, andS3 satisfy the usual angular momentum commutation relations)Construct

an example of such a vector.
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Solutions to the problems given in Vol. 4 No. 4 of Prayas

Solutions provided by: H.S. Mani

Problem 1: The vector potential is defined by the equation~B = ~▽ × ~A and by applying Stokes

theorem we see that the loop integral
∫

c
~A.~dl =

∫

~B. ~dS where the surface integral is over an area

with its boundary as the loopc (with the contourc being in the counter clock-wise direction). This

is the magnetic flux enclosed by the closed loopc. This is true irrespective of the size of the loop.

Consider now the case of a thin current carrying solenoid situated on earth, with fluxφ through

it. The loopc surrounding the solenoid is taken to be circular, concentric with solenoid, and has

radius R. Take R to be extremely large, say distance to the moon. The above expression tells us that

as soon as the fluxφ is changed on the earth,~A on the loop (at distance R away from the solenoid)

must change instantaneously. How is this consistent with Special Relativity ?

Solution to Problem 1:

If the loop is very far away the flux enclosed by it zero as the most of the magnetic lines which

come out of the solenoid return back and changes of the flux is felt only near the vicinity of the

solenoid. For the flux to change in the loop the size of the solenoid should be of the order of the

loop.

Saying it differently, far away from the loop the contribution of any localised current distribu-

tion is given by dipole which falls as1
r3

and hence the vector potential falls of as1
r2

, wherer is

distance of the point of observation from the current distribution. Thus
∮

~A.~dl does not get any con-

tribution. Only the ”radiating terms” from the time dependent current distribution has1
r

behaviour

but this is retarded and reaches the loop after a time interval determined by the speed of light.

Problem 2: Consider two one-dimensional coupled simple harmonic oscillators described by the

Hamiltonian

H =
p2
1

2m1

+
p2
2

2m2

+
1

2
(k1 x

2

1
+ k2 x

2

2
+ k12 x1 x2)

Find the energy levels of the system.( herep1, p2, x1, x2) refer to the momenta and coordinates of

the two harmonic oscillators respectively.m1,m2 are their respective masses.)

Solution to Problem 2:

Let

x′
1
= (

m1

m2

)−(
1

4
)x1; p

′

1
= (

m1

m2

)(
1

4
)p1

and

x′
2
= (

m1

m2

)(
1

4
)x2; p′

2
= (

m1

m2

)−(
1

4 )p1
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This ensures[x′i, p
′

j ] = ih̄ δij with i, j = 1, 2 and the Hamiltonian becomes

H =
p′2
1

2
√
m1m2

+
p′2
2

2
√
m1m2

+
1

2
[k′

1
x′2
1

+ k′
2
x′2
2

+ k′
12
x′
1
x′
2
]

where

k′
1
= (

m1

m2

)−
1

2 k1; k
′

1
= (

m1

m2

)
1

2 k2; k
′

12
= k12

The potential energy term can be written as

(

x′
1
x′
2

)

(

k′
1

k′

12

2

k′

12

2
k′
2

)(

x′
1

x′
2

)

The eigenvalues of the2× 2 matrix are

K
±

=
(k′

1
+ k′

2
)±

√

(k′
1
− k′

2
)2 + k′2

12

2

Since the diagonalization can be achieved by a unitary transformation,

(

X1

X2

)

= (U)

(

x′
1

x′
2

)

(

P1

P2

)

= (U)

(

p′
1

p′
2

)

The hamiltonian becomes

H =
P 2

1
+ P 2

2

2m
+

1

2
[K+X

2

1
+ K

−
X2

2
]

wherem =
√
m1m2. We continue to have[Xi, Pj ] = ih̄δij, i, j = 1, 2

The energy levels are

E = h̄(Ω+n+ +Ω
−
n
−
+ 1)

whereΩ
±

=
√

K±

m
andn

±
take integer values0, 1, . . ...

................................
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