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Abstract. We undertake a detailed numerical investigation of the parameter plane of the discrete prey-predator
model with the natural death rate of predator in the absence of prey equal to zero. We identify the various
dynamical regimes in the parameter plane numerically. Our numerical studies reveal the presence of a region
where the asymptotic state deviates from the analytically expected value. We attribute this to the competition
between the prey and the predator for survival. We also undertake a dimensional analysis to compute exactly
the border line seperating the the periodic and chaotic domains in the parameter plane.
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1. INTRODUCTION

The problem of the competition between populations of two species is an old one and different
models have been proposed to understand its mechanism. The first model in this regard was proposed
by the mathematician Voltera [1] in the form of a system of differential equations:

dx

dt
= ax(1− x)− bxy

dy

dt
= −cy + dxy (1)

where x(t) and y(t) represent the population density of prey and predator at time t and a, b, c and
d are positive parameters. Here a represents the natural growth rate of the prey in the absence
of predators and c represents the natural death rate of predator in the absence of prey. The terms
(−bxy) and (+dxy) describe the prey-predator encounters which are favourable to predators and
fatal to prey. The dynamics of the prey-predator system has been studied by many authors [2–4].

Note that the above model cannot show any chaotic behavior as it is a two dimensional flow. In
fact, discrete models are more reasonable to describe the interaction between species as discussed
in detail by May [5]. Such models are more efficient for numerical studies as well and exhibit much
richer dynamical structures including chaos, compared to continuous time models. Several such
prey-predator and host-parasite models have been formulated and analysed in the past [6–8]. Here
we consider the discrete version of the basic prey-predator model corresponding to Eq.(1). There are
two versions for this model, one with the natural death rate of predator in the absence of prey c 6= 0
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Figure 1. The bifurcation structure of the prey-predator model showing how the pop-
ulation of prey (x) changes with d as the control parameter, for six different values of
a. Three different phases can be clearly seen in all cases. The first part indicates period
doubling bifurcations to chaos as a varies from 1 to 4 (logistic dynamics), with preda-
tor population yn → 0 for small d. The second phase is a stable fixed point for both x

and y which decreases in size as a increases. The last phase represents the post Hopf
bifurcation with limit cycles and periodic windows on the way to chaos as d increases.
Chaos appears only for sufficiently large values of (a, d).

56 Student Journal of Physics, Vol. 6, No. 1, Mar. 2017



A Numerical Eploration of the Parameter Plane in the Prey - Predator Model

and the other with c = 0. The first version has been studied analytically and numerically by Jing
and Yang [9] and Elsadany et al. [10]. The second version with c = 0 has been studied in detail by
Danca et al. [11] and showed the presence of stable periodic regions, bifurcations and chaos in the
model. We undertake a detailed numerical analysis of the complete parameter plane of this model.
We identify the exact region of chaos in the parameter plane. Moreover, we show numerically the
existence of a small region in the parameter plane where the competition between the predator and
prey forces the predator into extinction, beyond the region of extinction obtained analytically. We
also undertake a dimensional analysis of the chaotic attractors of the model.

The paper is organised as follows: The next section presents a stability analysis of the model
to identify the stable one cycle region. Our main results are discussed in Section 3, where a detailed
numerical analysis of the model is undertaken. Conclusions are drawn in Section 4.
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Figure 2. Same as the previous figure, but for predator population y instead of x.
Again, three phases can be seen for all a values with the first phase corresponding to
predator extinction with yn → 0. Note that this phase first decreases with a and then
increases (that is, extends to larger range of d values) as a becomes large.
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2. STABILITY ANALYSIS AND PERIODIC REGIME

The discrete model we consider is given by

xn+1 = axn(1− xn)− bxnyn
yn+1 = dxnyn (2)

There are two stable fixed points of the map given by

(x∗1, y
∗
1) = (0, 0), (x∗2, y

∗
2) = (

1

d
,
a

b
(1− 1

d
)− 1

b
)

Taking the linearised Jacobian matrix J , the stability of a fixed point can be established by cal-
culating the eigen values λ of J corresponding to the fixed point using the characteristic equation

|J − λI| = 0

For (x∗1, y
∗
1), we get λ1 = 0, λ2 = a. Thus (0, 0) is stable if a < 1, irrespective of the value of b and

d and both prey and predator vanish asymptotically.
For the second fixed point, y∗2 > 0 for d > a

a−1 . Moreover, the eigen values λ1,2 corresponding
to (x∗2, y

∗
2) are

λ1,2 = (1− a

2d
)± 1

2

√
(
a

d
+ 2)2 − 4a (3)

The condition λ1,2 < 1 is satisfied for d > a
a−1 and a > 1. Thus the condition

d =
a

a− 1
(4)

represents a curve in the parameter plane a − d below which the dynamics of prey is governed by
the logistic map with a as the control parameter with the population of predator yn → 0.

Above this curve, the fixed point (x∗2, y
∗
2) becomes stable and one expects a stable one cycle

for the co-existence of prey and predator. The region of stability for the fixed point (x∗2, y
∗
2) can be

determined by looking at the characteristic equation for J at the fixed point, which can be shown to
be

P (λ) = λ2 − Trλ+Det = 0 (5)

where Tr is the trace and Det is the determinant of the Jacobian matrix J(x∗2, y
∗
2) and are given by

Tr = 2− a

d
(6)

Det = a(1− 2

d
) (7)
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If the eigen values λi for J(x∗2, y
∗
2) are inside the unit circle in the complex plane, then the fixed

point (x∗2, y
∗
2) is locally stable. The necessary and sufficient condition for this are given by

i. P (1) = 1− Tr +Det > 0

ii. P (−1) = 1 + Tr +Det > 0

iii. P (0) = Det < 1

By substituting the values of Tr andDet, the above 3 conditions can be shown to be equivalent
to

d >
a

a− 1
(8)

d >
3a

a+ 3
(9)

d >
2a

a− 1
(10)

Thus, the region of stability for the fixed point (x∗2, y
∗
2) is determined by the condition

d ∈ (
a

a− 1
,

2a

a− 1
) (11)

The fixed point becomes unstable through a Hopf bifurcation producing a limt cycle. Thus the line
of Hopf bifurcation in the parameter plane is given by the condition

d =
2a

a− 1
(12)

Above this line, the asymptotic state is a limit cycle which may be periodic or quasi periodic de-
pending on the values of a and d. As a and d increases further, the system shows more complex
behavior including chaos. We now explore this region of the parameter plane numerically in detail
to identify the chaotic regime.

3. NUMERICAL RESULTS

From the analytic results obtained in the previous section, it becomes clear that the value of the
parameter b cannot control the asymptotic dynamics; it only determines the position of the attractor
in the phase plane. Hence we fix the value of b as 0.2 in all the computations. Since the growth rate
of prey in the absence of the predator is governed by the logistic dynamics, we restrict the value of a
and d to a maximum of 4. Also, for a, d < 1, both xn and yn→ 0. Hence effectively, the parameter
plane (a− d) is restricted within the range [1− 4]. For a > 4, the trajectory escapes to∞. In all our
numerical simulations, we use the initial condition x0, y0 as 0.63, 0.18. But we have checked that
the results remain unchanged for any initial value in the unit interval [0, 1].
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Figure 3. The bifurcation structure for prey population with a as the control parameter
for different fixed values of d. When d is sufficiently low (say,d = 1.5), the bifurcation
structure is clearly that of the logistic map. As d increases, 3 phases can be seen as in
Fig. 1 with stable one cycle, Hopf bifurcation and finally chaos. For a small range of d
values, (example d = 1.67), the dynamics once again re-enters the extinction phase for
predator with x values fluctuating with logistic chaos.
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Figure 4. A part of the bifurcation structure for predator with d as the control param-
eter. There is a small region shown within the two vertical lines where the dynamics
sensitively depends on the value of d. The asymptotic state may switch between 0 and
a stable state for an infinitesimal change in the control parameter d.
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We first compute the bifurcation structure of the prey-predator model for the population of the
prey (x) and pedator (y) seperately as a function of d for several fixed values of a in the range [1, 4].
The results are shown in Fig. 1 and Fig. 2 respectively for six different values of a. Three seperate
phases can be clearly seen in both the figures. The first phase (for small d) indicates period doubling
bifurcations to chaos for prey as a increases from 1 to 4. which is just the logistic dynamics in the
absence of the predator, yn → 0. The second phase corresponds to stable co-existence of prey and
predator, and its range steadily deceases with a. As the parameter is further increased, the system
undergoes a Hopf bifurcation producing a limit cycle (third phase) and finally becomes chaotic at
values of a and d as discussed in detail below. Note also that the range of the first phase decreases
with a initially, but extends to larger values of d as a increases. This result is completely unexpected,
since analytically the domain of predator extinction decreases continuously with a as per Eq.(5). We
explore this numerical result in more detail below.

In Fig. 3, we show the bifurcation structure for prey population with a as the control parameter
for different fixed values of d. As expected, when d is small, the bifurcation structure is that of the
logistic map. When d is sufficiently large, three phases can be clearly seen, namely, predator extinc-
tion, stable one cycle and domain of Hopf bifurcation and chaos. For a small range of intermediate
d values (for example, d = 1.67), the dynamics re-enters the extinction phase for predator where
analytically one expects a stable phase. It is clear that there is a small region in the parameter plane
where the competition between the predator and prey becomes critical in determining the asymptotic
state of the combined system. As the growth rate of prey dominates, the population of the predator
is quenched into extinction, stretching the domain of extinction well into the stable region.

Another interesting result we have obtaiined numerically is the identification of a very small
regime on the border between the domain of extinction and the stable domain where two stable
asymptotic states become riddled depending on the parameter value. In other words, the asymptotic
state is sensitively dependent on the parameter value and can switch between two stable states with
an infinitesimal perturbation to the parameter. The predator population can switch between stability
and extinction while the population of the prey can correspondingly switch between stability and
chaotic oscillation. This can be seen from Fig. 4 which is a part of the bifurcation structure for
predator with d as the control parameter. There is a small region shown within two vertical lines
where the asymptotic state switches between zero and a stable state for an infinitesimal change in
the control parameter d. A magnified view of this region is shown in Fig. 5 to make this more clear,
along with the corresponding asymptotic state for prey.

As the parameter values are increased, the fixed point becomes unstable through a Hopf bifur-
cation producing a limit cycle. This is shown in Fig. 6 in the top panel. The limit cycle may be
periodic (seen as periodic window in the bifurcation structure) or quasi periodic depending on the
parameter values. Both are shown in the bottom panel of Fig. 6.

Our main aim in this work is to identify the domain of chaos exactly in the parameter plane
for the prey-predator model. Chaos occurs at critical points for the parameters a and d. We scan
the parameter plane numerically increasing a and d in steps of 0.01 and undertake a dimensional
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Figure 5. The top panel gives a magnified view of the small region between the two
vertical lines in the previous figure. The lower panel shows the corresponding values
of x for that region. Note that as y switches between 0 and a stable state, x switches
between logistic chaos and a stable state.

Student Journal of Physics, Vol. 6, No. 1, Mar. 2017 63



P. K. Thankam, P. P. Saratchandran and K. P. Harikrishnan

6

6.2

6.4

6.6

6.8

7

a=3.57,d=2.77 a=3.57,d=2.78

0 0.2 0.4
0

2

4

a=2.16,d=3.8

0 0.2 0.4 0.6

a=2.74,d=3.2

Figure 6. The top panel shows the nature of the attractor just before and after the Hopf
bifurcation. The lower panel shows a quasi periodic limit cycle and a periodic window.
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analysis to detect chaos. We use the modified box counting algorithm [12] to compute the correlation
dimension D2 by generating the time series. By using this scheme, we are able to locate the domain
of chaos exactly in the parameter plane. In Fig. 7, we show the chaotic attractors for four different
sets of parameter values (a, d). The corresponding D2 values are shown in Fig. 8.
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Figure 7. The chaotic attractors of the prey-predator model for four different parameter
values.

To summarise, the different dynamical regimes of the prey-predator model obtained from our
numerical analysis are shown in Fig. 9. The domain of chaos is denoted as region IV. The region
(denoted as I) below the dashed line corresponds to extinction of predator and logistic dynamics for
prey as a increases. The dotted line is the analytic curve (Eq.(5)) above which the second fixed point
(x∗2, y

∗
2) should become stable. But numerically we find that the domain of extinction encroaches

into the stable domain for lager a values. Thus, there is a region between the two lines (denoted
V) where analytical and numerical results disagree and the predator is forced into extinction in
competition with the prey. There is also a smaller region within this denoted by triangles, where the
asymptotic state of the system depends sensitively on the parameter values.
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Figure 8. The correlation dimension D2 of the four chaotic attractors in the previous
figure as a function of the embedding dimension M .
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Figure 9. The complete parameter plane of the prey-predatoe model showing different
domains of dynamics. The dotted line marks the stability of the second fixed point of
the model. The dashed line which coincides with the dotted line for the major part, but
bifurcates from it for larger a values represents the line of extinction of the predator.
In the region below this line, denoted I, yn → 0 and the model displays logistic dy-
namics. The region II above this line represents the co-existence of predator and prey
with stable one cycle. The solid line represents the transition from stable one cycle to
periodic and quasi periodic oscillations by way of Hopf bifurcation. The region IV with
solid vertical lines at the top right corner is where the dynamics turns chaotic. The re-
gion V where the dashed line bifurcates from the dotted line represents the competition
between predator and prey and the predator is forced into extinction. There is a small
part inside this, denoted by scattered triangles, where the asymptotic state of the system
depends sensitively on the parameter values.
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4. CONCLUSION

The prey-predator model is one of the most studied models in the context of deterministic chaos.
Different versions of this model have been extensively studied by many authors in the past, both
analytically and numerically. In this study, we numerically explore the parameter plane of the basic
prey-predator model to identify various dynamical regimes, especially the chaotic regime. We are
able to locate for the first time the exact domain of occurance of chaos in the parameter plane
through a dimensional analysis. We compute the fractal dimension of the chaotic attractors for
typical parameter values using a modified box counting scheme. Another interesting result we have
obtained is the identification of a domain in the parameter plane where the asymptotic state deviates
numerically from the analytically expected value and also a small region where the asymptotic state
depends sensitively on the parameter values.
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