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Studying the Puzzle of the Pion Nucleon Sigma Term

Christopher Kane1∗
1Senior Undergraduate Student, Department of Paper and Bioprocess Engineering, SUNY ESF, Syracuse, New
York, USA.

Abstract. In this paper I investigate the flavor dependence of the pion nucleon sigma term (σπN ) for the
Nf = 2, Nf = 2 + 1, and Nf = 2 + 1 + 1 cases, where Nf is the number of flavors. I calculate σπN
using the Hellmann-Feynman method which uses results of lattice quantum chromodynamics (LQCD). I use
the expansion from Baryon Chiral Perturbation Theory as my nucleon mass fitting equation. I extrapolate the
data to a → 0, where a is the spacing of the lattice in LQCD, and apply the constraint that data must meet the
condition MπL > 3.8 to avoid finite volume effects, where Mπ is the pion mass and L is the length of the
lattice in LQCD. My results shed light on the recent disparity between values of σπN calculated using different
methods.

1. INTRODUCTION

The search for dark matter has seen a surge of interest in recent years with the hope of finding
physics beyond the standard model. All current experimental searches rely on dark matter particles
interacting with nucleonic matter, i.e. protons and neutrons. One leading candidate for a dark
matter particle is the neutralino, which is predicted by the theory of super-symmetry [1]. In order
to constrain experiments searching for the neutralino, the cross section of interaction with nucleons
must be known. The pion-nucleon sigma term (σπN ), which is a fundamental parameter in the theory
of quantum chromodynamics (QCD), is used to calculate this cross section [2]. It was originally
calculated by phenomenological methods but recently has been calculated using methods involving
LQCD. There is a disparity between the two methods however, with σπN being significantly lower
using the latter method [3]. This disparity is large enough to cause concern in the dark matter
community as experiments would need to be changed accordingly.

One method of calculating σπN using LQCD data is called the Hellman-Feynman (HF) method.
The HF theorem relates σπN to the nucleon mass (MN ) dependence on the quark mass (mq) [4].
The HF theorem can also relate σπN to the nucleon mass dependence on the pion mass (Mπ) as
M2
π = mq . From this point on, Mπ and mq will be used interchangeably with this understanding.

The HF theorem is defined in Eq. 1.

σπN = mq
∂

∂mq
MN (mq) = M2

π

∂

∂M2
π

MN (M2
π) (1)
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LQCD is used to calculate the nucleon mass from a given quark mass (quark masses need not be
physical). These data points are in turn used to determine the nucleon mass dependence on the
quark mass the HF theorem requires to calculate σπN . It does so by simulating the dynamics inside
the nucleon. Nucleons are composed of three valence quarks, but from the Heisenberg Uncertainty
Principle, ∆E∆t ≥ ~2, we know that quark-antiquark pairs can be created and annihilated from the
vacuum. Heavier quarks will be created for shorter periods of time and therefore will have a smaller
effect on the internal dynamics of the nucleon. It is common in LQCD simulations to assume that
only the two and three lightest flavors (up, down, strange) of quarks contribute to the dynamics and
that contributions from the heavier flavors (charmed, top, and bottom) can be ignored. In this paper
I present results of σπN calculated from data that included the two lightest flavors (Nf = 2), three
lightest flavors (Nf = 2 + 1), and four lightest flavors (Nf = 2 + 1 + 1) to see if the heavier quarks
have a significant contribution or if they can be safely ignored in further simulations.

2. LATTICE QCD

2.1 Overview

QCD is the theory that describes how quarks and gluons interact via the strong force. At high
energies, i.e. particle accelerators, perturbation theory can be used to perform precise calculations.
At low energies however, i.e. inside a nucleon, perturbation theory fails and calculations can no
longer be done. Lattice QCD is a fully non-perturbative formulation of QCD that can perform
calculations at any energy [5].

LQCD works by putting spacetime on a grid as seen in Fig. 1. The quark field exists on
the lattice sites and the gluon field exists on the lattice bonds connecting neighboring sites. Each
lattice has three important properties, the lattice spacing a, the box length L, and the quark mass
mq . LQCD is developed such that if the following limits are taken, lim a → 0, limL → ∞,
limmq → mq,physical, physical QCD is recovered. Because the universe we live in is continuous
and infinite however, any calculations done on a lattice inherently contain systematic errors. The
two major sources of systematic error are finite volume effects (L) and lattice spacing effects (a).

2.2 Finite Volume Effects

Finite volume effects occur when L is small compared to the wavelength of the quarks on the lattice.
Instead of comparing L to the wavelength, it is usually compared to the mass of the quarks. To see
how this can simplify quantifying finite volume effects, we look at the DeBroglie wave equation
λ = hp. Because less mass implies less momentum, less mass implies a larger wavelength. So
the smaller the quark mass, the larger the box must be. A useful quantity to look at in judging the
magnitude of the finite volume effects is therefore the product of the pion mass and the box length
MπL. If this quantity is large enough, it is reasonable to ignore the systematic error. If it is small,
steps must be taken to extrapolate the calculations to L → ∞ and account for the finite volume
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Figure 1. Image of a proton on a typical lattice in LQCD. The lattice spacing a is in
green and the box length L is in red. The image is reproduced with the permission of
Professor H. Lin.

effects.

2.3 Lattice Spacing Effects

Finite lattice spacing effects occur when a is too large to properly simulate strong force dynamics.
The value of a necessary is less dependent on mq than L. A standard value of a generally accepted
to limit the size of finite lattice spacing effects is a < 0.1 fm. The leading corrections in the
lattice spacing effects that remain are typically O(a2) [5]. As systematic errors are unique to each
simulation, results can be extrapolated to a→ 0 by adding a term cja

2 to the fitting equation where
j indicates what collaboration each data point was calculated by. The cj terms are then treated as
fitting parameters.

3. METHOD OF CALCULATION

3.1 Applying the Hellmann-Feynman Theorem

The HF methods requires a functional relationship between the nucleon mass and quark mass. To
achieve the necessary functional relationship, I use the expansion taken from Baryon Chiral Pertur-
bation Theory (BχPT) [6]. The first several terms of the expansion in the pion mass can be seen in
Eq. 2.

MN (M2
π) = M0 − 4C1M

2
π +

1

2
ᾱM4

π +
C1

8π2f2π
M4
π ln

M2
π

M0
(2)
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The terms M0, C1, and ᾱ are low energy constants (LECs) that must be determined before
calculating σπN . Once they are known, the HF theorem allows for a straightforward calculation of
σπN through a simple analytic derivative given by Eq. 3.

σπN = −4C1M
2
π + ᾱM4

π +
C1

4π2f2π
M4
π ln

M2
π

M2
0

+
C1

8π2f2π
M4
π (3)

3.2 Determining the Low Energy Constants

The LECs are determined by fitting Eq. 2 to the nucleon mass data generated by LQCD using vary-
ing pion masses. All sources of error are small enough compared to the error in the values of MN

and are therefore deemed negligible. Additionally, errors in MN are assumed to be uncorrelated.
To ensure that finite volume effects were negligible, points that did not satisfy MπL > 3.8 did not
enter the fit. Points were extrapolated to a → 0 by including a term of the form cja

2 in the fit for
each collaboration data was taken from. Three cj terms were added in the Nf = 2 case and two cj
terms were added in both the Nf = 2 + 1 and Nf = 2 + 1 + 1 case. The final χ2 function that I
minimize is

χ2 =
∑
i=1

MN (M2
π) + cja

2 − di(M2
π)

σi
, (4)

where di(M2
π) are the LQCD data points for MN with associated uncertainties σi. The common

fitting parameters for all three fits include M0, C1, and ᾱ. A good fit will have χ2/dof ∼= 1, where
dof is short for the degrees of freedom in the fit and is defined as the number of data points (di)
minus the number of fitting parameters (i.e. M0, C1, ᾱ, cj). Uncertainties in the fit parameters,
nucleon mass, and σπN were determined using the standard jackknife procedure described in [7].
All values will be given in the form mean(stdev). As an example, 7.92(13) shows that the mean
value is 7.92 with an associated standard deviation is 0.13.

4. RESULTS

For the fit usingNf = 2 LQCD collaboration data, seven points were taken from the Mainz collabo-
ration [8], six points were taken from the RQCD collaboration [9], and seven points were taken from
the ETM collaboration [10]. The three extrapolation parameters (cj of Eq. 4), can be found in Table
1. The cLQCD and cRQCD terms are consistent with zero while the cMainz term is not. This shows
that the systematic error introduced in the ETM and RQCD collaborations were similar in magnitude
and thus a non-zero extrapolation was necessary for the Mainz data points. For the Nf = 2 + 1 fit,
nine points were taken from the LHP collaboration [11] and five points were taken from the NME
collaboration [12]. The extrapolation parameters cLHP and cNME are not consistent with zero as
seen in Table 1. For the Nf = 2 + 1 + 1 fit, fifteen points were taken from the ETM collaboration
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[13] and six points were taken from the PNDME collaboration [14]. Like the Nf = 2 + 1 case, the
extrapolation parameters cETMC and cPNDME are not consistent with zero as seen in Table 1.

2*Nf = 2 cRQCD −0.12(15)

cETMC 0.15(14)
cMainz 0.55(19)

2*Nf = 2+1 cLHP 0.124(9)
cNME −0.166(4)

2*Nf = 2+1+1 cETMC 0.136(4)
cPNDME −0.042(25)

Table 1. Extrapolation parameter values (a→ 0) for the Nf = 2, 2+1, 2+1+1 fits.

The fit for the Nf = 2 case can be seen in Fig. 2. The large χ2/dof can be explained by
analyzing the contribution of each individual data point to the total value. In this fit, three data
points contributed to more than 50% of the total value. From this it is seen that using Eq. 2 as
the fitting equation is appropriate, and the systematic error in the three data points in question was
underestimated. The fit for the Nf = 2 + 1 case can be found in Fig. 3. Although the χ2/dof
is smaller than in the Nf = 2 case, it is still not low enough to be considered a good fit. Similar
to the previous case however, three data points accounted for over 50% of the value. This leads
to the same conclusion that the systematic error in those data points were underestimated. The
fit for the Nf = 2 + 1 + 1 case can be seen in Fig. 4. The χ2/dof is within the range to indi-
cate a good fit. This shows that errors in all data points have appropriate errors associated with
them.

Nf M0 [GeV] C1 [GeV-1] ᾱ [GeV-3] σπN [MeV] χ2dof

2 0.908(4) −0.55(6) −5.4(1.8) 40(4) 4.76
2+1 0.901(23) −0.26(18) 11(10) 25(11) 2.04

2+1+1 0.916(18) −0.56(4) −7.5(9) 40(3) 1.31

Table 2. Results for BχPT fits to Nf = 2, 2+1, 2+1+1 nucleon mass data.

The values of σπN for the Nf = 2 and Nf = 2 + 1 cases, seen in Table 2, agree with values
produced by [6] within errorbars. Comparing the values of σπN for all three cases, we see that the
mean values for the Nf = 2 and Nf = 2 + 1 + 1 cases are equal with similar error bars. The mean
value for the Nf = 2 + 1 case is significantly smaller comparatively, but has a standard deviation of
40% the mean value. Because of this large error, the value still agrees with the Nf = 2 case within
error bars and is just over one standard deviation away from agreeing with the Nf = 2 + 1 + 1

case within error bars. Furthermore, comparing the values of the fitting parameters it is seen that the
values ofM0 for the three cases are not statistically different. The values ofC1 and ᾱ for theNf = 2

and Nf = 2 + 1 + 1 cases are indistinguishable while the values for the Nf = 2 + 1 case disagree.
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Figure 2. Nf=2 flavor fit of nucleon mass vs. pion mass squared. Data points from
RQCD are in green, from Mainz are in red, and from ETMC are in blue. The shaded
blue region is the uncertainty in the MN calculations while the solid dark blue line is
the mean value of MN .
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Figure 3. Nf = 2 + 1 flavor fit of nucleon mass vs. pion mass squared. Data points
from NME are in blue and points from LHPC are in green.
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Student Journal of Physics,Vol. 6, No. 3, Jul-Sep. 2017 127



Christopher Kane

However, the error in C1 and ᾱ for the Nf = 2 + 1 case are, again large, with values of 70% and
90% of the mean respectively. One possibility for the large error in the Nf = 2 + 1 case is the small
number of available data points compared to the other cases. The Nf = 2 and Nf = 2 + 1 + 1 had
twenty data points that met the fit requirements while the Nf = 2 + 1 case had only fourteen points
that met the fit requirements. Because of the large error in the parameters for the three flavor case,
I cannot conclude the value of σπN is statistically different from the two and four flavor case. The
fits therefore show that the values of σπN for the three cases are not statistically different and there
is no apparent flavor dependence.

5. SUMMARY AND CONCLUSION

In this work I collected data from various collaborations generated using lattice QCD for the two
flavor, three flavor, and four flavor cases. The data needed to meet the requirement that MπL > 3.8

to assure finite volume effects could be safely ignored. Terms of the form cja
2 were added to the

fitting equation to account for lattice spacing effects. This data was fitted to an expansion of the
nucleon mass in terms of the pion mass developed from Baryon Chiral Perturbation Theory. Once
the low energy constants were determined, I applied the Hellmann-Feynman theorem to the fitting
equation in order to calculate σπN . Comparing the values of σπN for the three cases, it is seen that
they are not statistically different. This shows that after a first level analysis, σπN has no significant
dependence on the number of flavors included in the LQCD simulations. The inclusion of heavier
quarks can therefore not account for the disparity in values calculated by phenomenological methods
and LQCD methods.
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Abstract. It is known that one can transfer the bulk of the kinetic energy of a body to another body of
smaller mass by arranging a large number of collisions with intermediate masses. In this project we explore
the transfer of kinetic energy for masses arranged in arithmetic and harmonic progression. We also take into
account inelastic collisions and find that there is an optimum number of intermediate masses which will ensure
maximal transfer of kinetic energy. We have discovered interesting duality relations. Irrespective of the fact
that the collisions are elastic or inelastic, we find that the results of arithmetic progression map onto that of the
harmonic progression.

1. INTRODUCTION

Collision is one of the simplest mechanical interaction between two bodies and in the process energy
and momentum are exchanged. One-dimensional collision as a means of transferring energy and
ensuring velocity amplification is of interest because it provides a simple model for understanding
natural phenomena where sequential collisions come into play. For example supernova explosion
can be understood with the help of one-dimensional chain collision of vertically stacked masses [1].
Kerwin has explained the phenomena of super-ball collisions using an analytical method [2]. The
dynamics of a queue, chain accidents in traffic, systems with narrow passage to allow for a single
particle etc. can be modelled as one-dimensional chain collision systems.

The quantity of interest in studying such systems is the fraction of energy or momentum that
is transferred. The exchange of kinetic energy and momentum depends mainly on the coefficient
of restitution e and the ratios of colliding masses. The coefficient of restitution is a property of the
colliding masses and for masses made of similar material we shall assume that it is a constant. What
one can manipulate is ‘mass’ because one can extract a particular amount of mass from the bulk.
Brilliantov and Pöschel considered viscoelastic particles where e is a function of colliding masses
and their relative velocity [3]. Recently, Ricardo and Lee showed that the maximum transfer of

∗renu.sahu@niser.ac.in
†physics.sutra@gmail.com
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kinetic energy takes place if the intermediate masses are geometric means of final and initial mass
[4]. They have also considered the case of inelastic collision with fixed coefficient of restitution e.

In our work, we take two different intermediate mass systems and compare the numerical values
of kinetic energy and velocity transfer ratios for a given value of initial and final mass. Unlike
Ricardo and Lee, we take masses in arithmetic and harmonic progression. We consider the general
case of inelastic collision.

2. BASIC EQUATIONS

We assume that the two colliding masses are spheres placed on the x- axis in such a way that the
distance between their centres is greater than the sum of their radii. Let a mass M moving with
velocity V , collide with a mass m which was intially at rest and due to which it’s velocity changes
to V ′ while the mass m gains a velocity v. This is shown in Fig. 1.

M

V

m

0

Mass
Before Collision

Velocity

M

V ′

m

v

After Collision

Figure 1. Collision of two masses

We define the velocity transfer ratio rv as

rv =
v

V

Similarly kinetic energy transfer ratio is defined as

rK =
1
2mv2

1
2MV 2

Since the momentum is conserved we have

MV = MV ′ +mv (1)

The coefficient of restitution is

e = (v − V ′)/V (2)

Using eqns. (1) and (2) we get the expression for velocity transfer ratio

rv =
(e+ 1)M

(M +m)
(3)
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M m1 m2 mn m

1st 2nd (n+ 1)thCollision

Figure 2. There are n intermediate masses between M and m and (n+ 1) colisions.

Using eqn. (3) in the definition of kinetic energy transfer ratio for inelastic collision we get

rK =
(e+ 1)2Mm

(M +m)2
(4)

Now consider the situation with n intermediate masses m1,m2,m3 . . .mn between M and m.
For the transfer of kinetic energy from M to m there has to be n+ 1 collisions. Initially the sphere
of mass M was moving with velocity V towards the above described assembly of set of stationary
masses. After the first collision let the velocity of M be V ′ and that of m1 be v1. Then after the
second collision between m1 and m2 the velocity of m1 becomes v′1 and m2 gains a velocity v2.
Generalising the notation, the ith collision is between mi−1 and mi. Just after (i − 1)th collision
mi−1 gets a velocity vi−1 and after the ith collision it becomes v′i−1. The velocity of mass mi is vi
after ith collision. Let the velocity transfer ratio and kinetic energy transfer ratio at ith collision be
denoted by rvi and rKi respectively.

It can be shown that the velocity transfer ratio for ith collision is

rvi =
vi

vi−1
=

(e+ 1)mi−1

mi−1 +mi
(5)

and the kinetic energy transfer ratio is

rKi =
1
2miv

2
i

1
2mi−1v2i−1

=
(e+ 1)2mi−1mi

(mi−1 +mi)2
(6)

Given the initial velocity of mass M we want to find rv and rK . From the definition of velocity
transfer ratio

rv =
v

V

Multiplying and dividing with vi where i = 1, 2, 3. . .n we get

rv =
v1
V

v2
v1

. . .
vn

vn−1

v

vn

=

n+1∏
i=1

rvi
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Similarly

rK =

n+1∏
i=1

rKi (7)

Next we consider two intermediate mass systems, arithmetic and harmonic.

3. INTERMEDIATE MASS SYSTEMS

3.1 Intermediate Masses in Arithmetic Progression

In this case the intermediate masses mi are such that M > m1 > m2 . . .mn > m and the magnitude
of difference of any two consecutive masses is a constant for the system. That is

M −m1 = mi−1 −mi = mn −m

where i = 2, 3 . . . n Let the common difference be denoted by d.

d =
M −m

n+ 1
(8)

Mass of ith intermediate sphere is mi = M − id. Substituting the value of d from eqn. (8) we
get

mi =
(n+ 1− i)M + im

n+ 1
(9)

Similarly

mi−1 =
(n+ 2− i)M + (i− 1)m

n+ 1

Using eqns. (5), (7) and (9), the velocity transfer ratio is

rv =

n+1∏
i=1

(e+ 1)[(n+ 2− i)M + (i− 1)m]

[2(n− i) + 3]M + (2i− 1)m
(10)

The momentum transfer ratio rpi for the ith collision is obtained by multiplying the mass ratio
mi/mi−1 with rvi. So, the momentum transfer ratio is

rp =

n+1∏
i=1

(
(e+ 1)[(n+ 1− i)M + im]

[2(n− i) + 3]M + (2i− 1)m

)
(11)

Similarly, using eqns. (6), (7) and (9), the kinetic energy transfer ratio is
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n e = 1 e = 0.99 e = 0.95 e = 0.90

0 0.7462 0.7388 0.7094 0.6735
1 0.8508 0.8361 0.7688 0.6929
2 0.8953 0.8705 0.7691 0.6581
3 0.9196 0.8835 0.7510 0.6101
4 0.9348 0.8891 0.7257 0.5597
5 0.9453 0.8901 0.6976 0.5108
6 0.9528 0.8882 0.6685 0.4647
7 0.9585 0.8847 0.6393 0.4219
8 0.9630 0.8799 0.6106 0.3825
9 0.9666 0.8784 0.5826 0.3465

Table 1. The energy transfer rK for varying number (n) of intermediate masses is
depicted in this table. Here the mass ratio x = m/M = 0.33. See text for discussion.

x e = 1 e = 0.99 e = 0.95 e = 0.90

nopt rK nopt rK nopt rK nopt rK

0.10 ∞ 1 13 0.7539 5 0.5394 3 0.4261
0.33 ∞ 1 5 0.8901 2 0.7691 1 0.6929
0.50 ∞ 1 3 0.9313 1 0.8498 0 0.8022

Table 2. Optimum number of intermediate masses (nopt) and corresponding energy
transfer (rK ) for various mass ratios (x) and coefficient of restitution (e).
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rK =

n+1∏
i=1

(e+ 1)2[(n+ 1− i)M + im][(n+ 2− i)M + (i− 1)m]

[(2(n− i) + 3)M + (2i− 1)m]2
(12)

The above expression for kinetic energy transfer is displayed for x = 0.33 in Table 1. For
nearly elastic collision (e.g. e = 0.99), the optimum number of collisions is nopt = 5. As the
collision becomes increasingly inelastic, nopt shifts to lower values. In fact for e = 0.9, nopt is 1.
For realistic scenarios, the exercise of introducing intermediate masses is counter-productive.

In Table 2 we display the optimum number of collisions for varying mass ratios. Even for an
almost elastic collision (e = 0.99), the kinetic energy transfer is sub-optimal varying from 93% to
75%. For a realistic case like e = 0.90 we find that the exercise of introducing intermediate masses
is not beneficial.

3.2 Intermediate Masses in Harmonic Progression

For the intermediate masses to be the harmonic means of M and m, their reciprocals have to be the
arithmetic means of 1/M and 1/m. Let us denote the common difference by d′. So,

d′ =

( 1
m −

1
M

n+ 1

)
(13)

The reciprocal of ith mass is

1

mi
=

1

M
+ id′

On simplifying further we get

mi =
Mm(n+ 1)

(n+ 1− i)m+ iM
(14)

Similarly the mass of (i− 1)th sphere will be

mi−1 =
Mm(n+ 1)

(n+ 2− i)m+ (i− 1)M

Using eqns. (5), (7) and (14) the velocity transfer ratio is

rv =

n+1∏
i=1

(
(e+ 1)[(n+ 1− i)m+ iM ]

[2(n− i) + 3]m+ (2i− 1)M

)
(15)

The momentum transfer ratio in this case is

rp =

n+1∏
i=1

(e+ 1)[(n+ 2− i)m+ (i− 1)M ]

[2(n− i) + 3]m+ (2i− 1)M
(16)

Now, using eqns. (6), (7) and (14) the kinetic energy transfer ratio is

rK =

n+1∏
i=1

(
(e+ 1)2[(n+ 2− i)m+ (i− 1)M ][(n+ 1− i)m+ iM ]

[(2(n− i) + 3)m+ (2i− 1)M ]2

)
(17)
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3.3 Symmetry

A numerical exercise for the mass ratio m/M=0.33 in the harmonic case yields results identical to
the arithmetic case of Table 2. This is not surprising since an interesting symmetry relation can be
discerned by examining the relevant expressions. For a system with n intermediate masses, it is seen
that the velocity transfer ratio in the (n + 2 − i)th collision for the arithmetic mean system is the
same as that in ith collision of the harmonic mean system. Replacing i by (n + 2 − i) we get the
self-same expression for the velocity transfer ratio of ith collision in harmonic mean system.

(rvi)AP =
(e+ 1)[(n+ 2− i)M + (i− 1)m]

[2(n− i) + 3]M + (2i− 1)m
(18)

Replacing i→ n+ 2− i in eqn. 18

(
rv(n+2−i)

)
AP

=
(e+ 1)[(n+ 2− (n+ 2− i))M + ((n+ 2− i)− 1)m]

[2(n− (n+ 2− i)) + 3]M + (2(n+ 2− i)− 1)m

This simplifies and we get(
rv(n+2−i)

)
AP

=
(e+ 1)[iM + (n+ 1− i)m]

[(2i− 1)M + (2(n− i) + 3)m]
= (rvi)HP (19)

Now it immediately follows that the kinetic energy transfer ratio will be same for (n + 2 − i)th

collision in arithmetic mean system and ith collision in harmonic mean system.(
rK(n+2−i)

)
AP

= (rKi)HP (20)

It is easy to see that the final velocity transfer ratio and kinetic energy transfer ratio will be same for
both progressions.

Consider the expression for momentum transfer for ith collision in the harmonic case.

(rpi)HP =
(e+ 1)[(n+ 2− i)m+ (i− 1)M ]

[2(n− i) + 3]m+ (2i− 1)M
(21)

An interesting relation exists. If we switch the masses M ↔ m for the velocity gain (eqn. (18)),
we obtain the corresponding momentum gain for the harmonic case (eqn. (21)). The reverse is also
true.

4. CONCLUSION

We began by discussing that full transfer of kinetic energy from one body to another is not possible,
if their masses are unequal. However, a judicious introduction of intermediate masses may ensure
optimum transfer of kinetic energy. We have taken two different intermediate mass systems, arith-
metic and harmonic. An interesting duality relation between arithmetic and harmonic was observed
(section 3.3). We find that for realistic scenarios the exercise of introducing intermediate masses
yields limited benefit. This scheme is a paradigm for similar exercises, such as impedance matching
in electrical circuits. We hope to explore such connections in the near future.
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Abstract. Jaggery (unrefined sugar) is locally made during the sugarcane harvesting season in Bijnor, a major
sugarcan growing area in India. As the hot semisolid heaps of jaggery are poured on the workfloor they acquire
predictable shapes. We analyse the formation of one such shape employing elementary hydrodynamics. We
obtain an interesting relation between the shear stress and the height of the jaggery mound. Using the equation
of continuity and plausible assumptions we attempt to explain why the shape of the mound remains invariant.
A similar approach can be used to understand a variety of shapes from porous sugar candy to glaciers.

1. INTRODUCTION

Bijnor in western Uttar Pradesh (UP) is arguably the jaggery capital of India. On the bus route from
Moradabad to Meerut one can catch sight of huge mounds of jaggery (called gur or gud in Hindi and
panella in Cental and South America) during the peak sugarcane harvesting season as one passes
by this town. Indeed, the production of jaggery is a cottage industry in almost all areas of the world
where sugarcane is grown in abundance.

Sugarcane is crushed and its juice is boiled and evaporated in large shallow pans. Often lime
or a chemical is added so that the impurities rise to the top in a frothy mixture and are removed. The
semi-solid mixture is yellow to dark brown in colour. It is scooped using small buckets and poured
on to a clean floor. The shape acquired by these jaggery mounds are varied but at times one can see
the shape as shown in Fig. 1. Two wooden planks or metal sheets are placed at two ends (y = 0
and 2L) and the hot jaggery is poured close to the meridian defined by the y axis at a more or less
steady rate. The hot viscous jaggery spreads symmetrically from the centre to the sides (x = −L/2
to x = L/2). In this article we try to understand the profile of this mound using our knowledge of
elementary fluid mechanics.

2. THE PROFILE OF THE MOUND

We can consider the jaggery mound to be an incompressible viscous fluid system. Over short time
scales we take the height profile H(x, y) to be fixed and independent of y. In this paper we attempt

∗praveen2600@gmail.com
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Figure 1. Shape of gud mound.

to derive H(x). The maximum height of the gud mound is Hm and from the figure it is clear that
H(x = 0) = Hm. Consider the density (ρ) of the gur to be constant. As one may easily verify the
pressure inside the gud mound is independent of y and at a point (x, z) can be written as [1]

ρg(H(x)− z)

where we have neglected the atmospheric pressure.
Consider a vertical slab ∆y∆z (shaded area in Fig. 1) located at x and in equilibrium. Because

of the x to −x symmetry (about the yz plane), we will consider only the x > 0 side. The horizontal
force is in +x direction exerted on the slab due to the pressure exerted by the gur mound can be
calculated. A simple integration yields

F (x) = ∆y

∫ H(x)

0

ρg(H(x)− z)dz =
ρgH(x)2

2
∆y (1)

The vertical slab ∆y∆z is subjected to two forces, one from the centre side (x) and the other from
the peripheral side (x+ ∆x). Thus the net horizontal force on the slab is

∆F = F (x)− F (x+ ∆x) = −ρgH(x)
dH

dx
∆x∆y (2)

Now the slab is in equilibrium. We note that the jaggery is in a hot semi-solid viscous state akin to
coal tar. Thus there is a shearing stress on the gud slab (σg) which opposes the net force derived
above. This viscous force is σg∆x∆y which yields

σg = −ρgH(x)
dH

dx

= −ρg
2

d

dx
H(x)2

(3)

The sign is negative since H(x) is a decreasing function of x. We can solve Eq. (3) with the
boundary condition H(L/2) = 0 to obtain the dependence of height on coordinate x. Note that you
are looking at the x > 0 side. For the x < 0 side
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H(x) =

√
σgL

ρg

(
1− 2x

L

)
and the maximum height by inserting x = 0 in the above equation. Thus

Hm =

√
σgL

ρg
(4)

The total volume (V ) of the (gur) mound can be calculated by integrating Eq. (5) and multi-
plying by the constant factor along the y-axis, namely 2L. Keeping in mind the symmetry of the
mound on either side of the yz plane yields an additional factor of two.

V = 4L

∫ L/2

0

H(x)dx

= 4L

√
σgL

ρg

∫ L/2

0

√
1− 2x

L
dx

=
4

3
L5/2

√
σg
ρg

=
4

3
L2Hm

(5)

3. DISCUSSION

The Equation (4) for the maximum height could also be derived by dimensional analysis. The shape
of viscous fluids is determined by two opposing forces: gravity and the force of viscosity and/or
surface tension. In the current case we are in the happy situation that the dimensionless factor is
unity, hence the dimensional analysis yields the exact result.

The base area A ' L2, so the volume as evidenced in Eq. (5) scales as V ' A5/4. This scaling
relation for the spread of a viscous fluid is perhaps general. For a viscous system with given density
and shear stress it is a consequence of the fact that the height decreases parabolically with the spread
along the x direction.

A related question is why the shape of the mound remains invariant as the semi-solid jag-
gery is poured periodically and gently over a span of several hours. This appears to be a case of
self-organized criticality (SOC). Additionally the shapes of several viscous substances may also be
susceptible to similar analysis. We plan to examine these issues in detail in the future.

The density of the jaggery gur found in our house hold is around 1300 kg/m3 [2]. Taking
L = 4 m and Hm = 1 m, the total mass of a gur mound will be roughly equal to 28 tonnes. This
gives σg ≈ 3.25 kPa. We urge the reader to buy jaggery, verify our model and experiment further.
Physics is sweet, physics is fun!
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Abstract: 
As the structure of the protein is essential to its function, a better understanding of protein folding

is fundamental to understanding protein function. [1] This comprehension of the function and folding of
proteins will enable medicine to synthesize proteins in a way currently not possible.  One of the major
hurdles  is  that  the  protein  has  the  capability  of  folding  in  different  ways  and  speeds.  The  
goal of our experiment is  the examination of the hYAP protein,  and to see the different speeds of
folding that it undergoes.  Our specific goal was to find instances of fast folding of the protein - folding
occurring within less than a millisecond.  The methodology behind this experimentation is presented,
along  with  results  for  fast  folding  of  the  protein,  and  slow  folding  of  the  protein.

1. INTRODUCTION

Current engineering of proteins is difficult, because of the direct relationship of
function  and  folding.   Furthermore,  a  greater  understanding  of  protein  folding  can
provide a possible method of combating prions - proteins that have folded in a manner
different than their native structure.  At times a function detrimental in comparison to the
standard function will arise as a result of this abnormal folding.  This abnormal folding
can result in other proteins folding abnormally as well, leading to diseases such as bovine
spongiform encephalopathy in certain animals,  Creutzfeldt-Jakob disease,  Alzheimer’s
disease  or  Gerstmann-Straussler  syndrome  in  humans  for  example. [2]  [3] By
understanding how proteins fold, the possibilities of chemical synthesis of proteins for
individuals  with  unique  dietary  needs  becomes  possible.  [4]  Consequently,  a  greater
understanding of diseases thought to be caused by prions will lead towards more efficient
treatment of these diseases. In this paper, we use the single molecule trapping technique
to study protein folding.  This technique is useful in this matter as it allows us to build a
stochastic model  of  the protein,  one molecule at a time.   This is  in contrast  to other
methods that result in building a model of the protein that is an average of the behavior.
In  this  experiment,  we  utilize  an  optical  trapping  method  in  which  we  capture  two
“beads” that when placed in the optical traps form a DNA tether with each other.  

 

Unfolding Proteins: Fast versus Slow
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2. EXPERIMENTAL

2.1 Overview of Trapping Method

The sample chamber and experimental set up is contained in a room of its own,
with baffling on the walls to prevent noise pollution, and the lights off to prevent light
pollution from affecting the experiment. With the beads captured in the optical trap, the
motion of the beads can be controlled to a certain degree.  The trap itself is conical in
shape and creates a restoring force upon the bead trapped within it.  If the trap is moved
to the left, the bead will be pulled to the left as well as it re-centers itself in the trap.  This
is what allows us to directly apply a force to an individual protein.  A calibration is found
for  every  bead  pair  that  tells  us  the  trap  stiffness  and  the  conversion  constant  for
determining the position of the beads.  Once this is done, the beads begin fishing for a
tether.  This entails one of the optical traps remaining stationary, while the other oscillates
closer and further from the stationary optical trap.  The streptavidin beads have a DNA
strand on them, followed by the protein, followed by another strand of DNA.  The strand
of DNA not directly on the streptavidin bead forms a digoxygenin with anti-digoxygenin
bond with the anti-digoxygenin bead.  The successful formation of this bond is what is
called a tether.  Once a peak force is measured during the movement further from the
stationary trap, this is indicative that the DNA from the streptavidin  bead has formed a
tether with the anti-digoxygenin bead.  At this point, the bead pair is able to be used to
exert force on the protein such that it will unfold, as seen in Figure 1.  

Figure 1:  Starting from the top, the beads are tethered together by the DNA.  Left to right, it is an
anti-digoxygenin bead, DNA, the protein under examination, DNA, and finally the  streptavidin
bead.   As the beads are moved further apart,  the protein experiences a force and eventually
unfolds.

  The beads are caught in the optical trap by the platform the sample chamber is
mounted on being moved. This movement is controlled outside of the room the sample
chamber is contained in. 
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2.2 Optical Trap Set-up

The laser used in this experiment is in the infrared spectrum at 1064 nm and is a
5W laser.  One of the objectives is held fixed, while the other is allowed to be moved
perpendicularly  towards  and  away  from  the  sample  chamber  (see  figure  2).   This
movement changes the diameter of the laser beam, and provides better collimation of
the  laser.   The  accuracy  of  the  collimation  is  checked  with  the  aid  of  an  infrared
fluorescent card.  The camera focused on the experiment has two lenses in front of it, an
ultraviolet lens and an infrared lens.  When the infrared lens is filtering light, the laser
can be seen on a monitor.  This allows a visual check of the laser to be conducted.  The
experimentalist looks for a shape that is as near a uniform circle as can be obtained
visually.  If the circle appears to be more elliptical, this is indicative that the sample
chamber itself is not presenting a vertical surface for the laser to pass through, and as
such the laser is coming out angled rather than straight.  This is adjusted by physically
rotating  the  chamber  to  achieve  a  uniform circle  rather  than  an  ellipse.   This  is  a
measure taken to ensure that before the sample is being experimented with, the optical
trap will  successfully capture the beads.   If the chamber is not presenting a vertical
surface for the laser to pass through, this can lead to issues during the experiment.  As
the sample chamber is moved, the angling can result in the captured bead being removed
from the optical trap.  This occurs because if the sample chamber is angled, as it is
moved the odds of the optical trap causing a bead to collide with the surface of the
sample chamber increase.

                                      

PD: Photodetector D: Dichroic Mirror F: Filter
O: Objective P: Pin Hole PM: Piezo Mirror
S: Sample Chamber T: Telescope *: Conjugate Planes

Figure 2: The experimental setup. [5]
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2.3 Preparation of Sample Chamber

Figure 3: The sample chamber.  Syringes are connected to the connectors, which have a needle on
them  attaching  them  to  a  tube.   Through  these  tubes,  the  buffer,  streptavidin  and  anti-
digoxygenin beads flow through the channels.  The capillaries allow the beads in the top and
bottom channels to flow into the middle channel where the optical trap is then used to capture
the beads and perform the experiment.  The fluids then leave the chamber through the tubes on
the left. Image is not to scale.   Image credit: Fallyn Stieglitz

Before the experiment can be conducted, the sample chamber must be prepared
for the optical trap.  The chamber used in this experiment is constructed out of cover
glass and parafilm (see figure 3).  The parafilm is used to create three separate channels
on the cover glass: the bottom channel is where the streptavidin beads with the protein
construct flow through, the middle channel is where the buffer solution flows through,
and the top channel is where the anti-digoxygenin beads flow through.  On the middle
channel there are two capillaries connecting the channel to the top and bottom channels.
These capillaries are what allow the beads to flow through to the middle channel and be
captured by the optical trap.  The chamber is initially prepared for a trapping session by
first pushing milli-Q water (filtered 0.2 microns) through the channels using syringes.
This is done to ensure that no excess of experimental materials is wasted.  The purpose of
pushing  the  milli-Q through  the  channels  is  to  ensure  that  there  are  no  air  bubbles
covering, or in, the capillaries before the experimental materials are added.  The beads are
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on the order of a micron in size and would not  be able  to flow into or  through the
capillary if an air  bubble is  blocking the capillary in any way.   The chamber is then
placed between the objectives of the experimental setup and visually verified for the clear
openings on the capillaries by the experimentalist.  These syringes containing the milli-Q
are left connected to the sample chamber until the syringes containing the sample to be
used are connected to the chamber.  This is another step taken to ensure that no air gets
into the chamber and causes bubbles that might interfere with a capillary.

2.4 Sample Preparation

The preparation of the sample involves making the buffer solution.  The buffer
solution is a combination of Triss-HCl, Glucose, NaCl, and water in a centrifuge tube.
Three separate centrifuge tubes are then used to portion out the buffer solution.  After
the buffer has been portioned, the beads are then added to the tubes.  Before adding the
anti-digoxygenin beads to a tube, the beads are first vortexed.  This is to ensure that
upon pipetting the beads, the container has a uniform concentration of beads as over
time the beads will settle at the bottom of the container.  The streptavidin beads are then
added to a separate tube, after being mixed by inverting or flicking the container.  As the
streptavidin beads have DNA attached to them, they cannot be vortexed as this would
shred the DNA.  Finally,  pyranose oxidase (poxy) is  added to all  three  tubes.   The
purpose of  the  addition of  the  poxy is  to  prevent  oxygen from interacting with the
solution  as  best  as  possible.   Oxygen  in  solution  can  get  converted  into  “radical
oxygen”.  Radical oxygen is highly reactive and will react with the molecules, possibly
breaking the DNA tethers or damaging the protein under study.  The poxy is an oxygen
scavenger, and will keep the radical oxygen from reacting within the solution.  The three
separate  mixtures  are  then  transferred  into  separate  airtight  syringes.   The  airtight
syringes and the poxy are implementations put into place to mitigate waste of material
and  ensure  that  oxygen  is  not  a  reason  for  lack  of  success  during  the  experiment.
However,  at some point the poxy will  become saturated with oxygen, and unable to
scavenge any more oxygen from the solution.  This will typically end the experiment, as
the oxygen will now be able to interact with the DNA and prevent tethers from being
formed successfully. To begin the experiment, the airtight syringes replace the syringes
currently attached to the sample chamber.  During this replacement, it is imperative that
air  not  be  able  to  enter  the  tubes  of  the  sample  chamber.   To  prevent  this,  the
experimentalist adds milli-Q to the connection location, to ensure that once the airtight
syringe is connected, there is no air between the solution contained within the syringe
and the milli-Q currently in the tubes of the sample chamber.  The airtight syringes are
then placed in specific positions that correspond to controls used by the setup to control
the  flow of  the  beads  (anti-dixoxygenin  or  streptavidin)  and  the  buffer.   There  are
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motorized syringe pumps at these positions that push the solution out of the syringes at
speeds ranging in the hundreds of nanoliters per second.  

2.5 Application of Force to Protein Construct 

Once this is done, the goal is to trap an anti-digoxygenin bead in one optical trap,
a streptavidin bead in the other optical trap, and then form a tether between the two beads
using  the  DNA.   Once  the  beads  are  both  successfully  caught  in  the  optical  trap,  a
calibration of the trap for this bead pair is done.  This will determine the trap stiffness
constant and a conversion constant that gives the bead position from the optical method.
[5] The calibration also gives the experimentalist a control over data collection.  For bead
pairs of a sample protein, the calibration for a bead pair should not be vastly different in
comparison to other bead pairs of the same sample protein.  If a bead pair presents a
calibration  that  is  outside  of  the  standard  calibration  for  a  sample  protein,  it  is
immediately apparent to the experimentalist that this bead pair cannot be used for data
collection.  This can happen for a variety of reasons: the beads vary in size, there could be
more than one bead in the optical trap, there could be multiple tethers formed between the
beads, the sample protein could possibly be bad.  If the calibration is within the standard
calibration for the sample,  the beads then form the tether.   Once the tether has been
formed, a force can be applied to the protein.  This is done quickly at first, to test whether
or not the tether is stable.  One of the optical traps is held stationary, and the other trap
moves away from it (see figure 1) which cause the force to be applied to the protein.  At a
certain force the protein will unfold, and this force is measurable.  After this fast scan has
been performed, a slow scan is performed.  The slow scan involves the trap moving in
discrete jumps as it moves away from the stationary trap.  The slow scan is performed in
order to see the fast folding occur.  The fast folding occurs rapidly, in times less than a
millisecond;  scanning  too  quickly  risks  missing  these  fast  folding  occurrences.   By
scanning slowly, we keep the protein at a certain force for a longer time.  Due to the
statistical mechanical nature of folding, at certain forces the unfolded state will be just as
likely to occur as the folded state.  This slow scan allows us to see this happen, as shown
in the following results.
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3. RESULTS AND DISCUSSION

3.1 Slow Folding Proteins

Figure 4: An example of slow folding.  In comparison to fast folding, slow folding takes place in
half to full seconds.

Shown in figure 4 is an example of slow folding.  There are two different models
to describe the dependence of the tether extension on the force applied: a model for
the protein folded, and a model for the protein unfolded.  The molecules are modelled
using the statistical mechanics of polymers. One of these models includes the unfolded
protein polymer, the other does not.  At low forces, the models are indistinguishable
from one another,  but as the force increases,  the models separate.   This  separation
between models is used to identify when and where the protein unfolds.  In the example
presented, the protein extended slightly less than 1550 nm, at which point the protein
then unfolded (indicated by the arrow), at a force of approximately 10 pN.  The data is
interpreted as a representation of slow folding because as can be seen at the point of
unfolding, there is a single distinct jump; the blue line moves from the folded model to
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          Data
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the unfolded model and stays there.

3.2 Fast Folding Proteins

Shown in figure 5 is an example of fast folding.  The difference here being that
rather  than  there  being  a  single  distinct  jump,  there  is  more  of  a  smooth  transition
between the folded and unfolded models that occurs over an extension range.  This is due
to how the data is taken; as the data is being taken, it is being averaged to avoid files of
an excessive data size.  The above is said to be fast folding because it is not folding just
once, but jumping between models rapidly. The result is that as the protein is jumping
between the models, at the lower force it spends a greater amount of time folded than it
does unfolded.  As the force increases, the time spent folded lessens and it is more likely

                                      

Figure 5: An example of fast folding.  The expected time for fast folding to occur is in the 
millisecond time range.  As seen in the circled area, the data is not just following one model.  The 
data points, if followed sequentially, would alternate between the folded model and the unfolded 
model as the protein switches between the two states rapidly.
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to find the protein in an unfolded state, until finally the protein is unfolded and following
the unfolded model.

3.3 Conclusion
Based upon the data taken during these experiments it was determined that fast

folding was possible for the protein construct.  However, these instances of this different
folding were few and far between.  Over the course of 8 weeks of experimentation, we
found 4 instances that were believed to be indicative of fast folding.  However, we have
shown  that  the  methodology  presented  is  useful  for  examining  different  folding
procedures for a given protein.  As a result of this, future studies will be made involving a
protein construct Protein G, as it  has also shown possibilities of there being different
types of folding occurring.  Whereas before it seemed to have two distinct states, the
folded and unfolded state, through the use of this method there is evidence to suggest that
there might be a state in between the folded and unfolded states.  This in between state of
Protein G is the focus of future studies using this method.
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Abstract: Several proton capture resonances in 14N have been studied theoretically using partial wave
analysis technique. Most of the results agree well with available experimental data. The analysis has
been extended to indicate that one of the resonances with uncertain spin may need a change in the
assignment. 

1.    INTRODUCTION
Study of radiative low energy proton capture reactions has several important implications
in  nuclear  astrophysics.   Experimental  data  on  the  capture  cross  sections  at  stellar
energies  are  essential  for  studying  primordial  nucleosynthesis.  The  measurements  at
stellar energies are difficult as the direct capture cross-sections are very low.  Usually
data measured at higher energies are extrapolated to lower energies, which may fail if
there are low energy resonances. The astrophysical capture reaction rate is thus greatly
affected by the capture resonances at the stellar energies. 

The partial wave analysis technique for studying nuclear radiative capture resonances is
well-established. This analysis is also useful to search for new resonances and to predict
their quantum numbers. In the present work, various experimentally observed resonances
[1] in  14N are reproduced reasonably well  using this theory.  Spectroscopic factors for
these states have also been estimated. Some of the deviations of the theoretical results
from data are discussed for future scopes.  
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2.    THEORETICAL APPROACH

2.1. The Code

The code wspot [2] has been utilized for the partial wave analysis. This program utilizes
Woods-Saxon potential  as the phenomenological one-body potential.  It  provides well-
accepted  results  for  the  properties  of  bound-state  and  continuum  single-particle
wavefunctions. The parameters of the potential are chosen to have a best fit of nuclear
single-particle energies and nuclear radii. This potential is composed of the sum of a spin-
independent  central  potential,  a  spin-orbit  potential,  and the Coulomb potential.   The
code thus provides single-particle energies and single-particle radial wavefunctions for
the bound states of Woods-Saxon potential  with quantum numbers  nr,  l and  j.  It  also
calculates the nucleon scattering cross-sections for given l and j values.

2.2. The Parameters

The set  of  parameters used for the Woods-Saxon potential are V0 (central  part)= −53
MeV, V1 (central part – isospin dependent= −30 MeV and V so (spin-orbit)= 22 MeV for
the potential  strengths,  and ro (radius parameter–central)  = rso (radius parameter–spin-
orbit) = 1.25 fm and ao (diffuseness–central)= aso (diffuseness – spin-orbit)= 0.65 fm for
geometry. The radius for the Coulomb term is smaller with rc = 1.20 fm. 

2.3. Determination of phase shifts

The code wspot [2] is used to calculate the energies and widths of the capture resonance
states  [1].  An  incident  particle  is  captured  to  form  a  metastable  bound  state  which
subsequently decays by emission of gamma or by release of a particle. For a given (l, j)

value the program calculates the phase shift (E) and the scattering cross section (E) as

a function of energy. The cross-section can be expressed as:

                                          

       

2.4. Determination of energies of resonant levels and their widths

By varying the energy of the incoming particle the relative phase of the inner and outer
wavefunctions are changed. The energy E0 where the amplitude of inside and outside
wavefunctions match, cross-section has maximum value. This energy E0 is known as a
resonance energy.  Only one partial wave ‘l’ is necessary to have the occurrence of a
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resonance state corresponding to the energy E0 where l = / 2. The width of the resonance
(Г) is determined from the energy (E), where cross-section reduces to half of a central
value (E-E0) = ±Г/2.

Ex 

(MeV)

ER

(MeV)

VN

factor

Width ()

 (keV)

Spectro-
scopic 

Factor (expt

/theo)

Single 
Particle 
Orbital 

Expt [1] Theo Expt [1] Theo

7.966 
(2¯)

0.416 0.411 0.933 <0.37 0.212 1.74 1d5/2 
(l=2)

8.062 
(1¯)

0.512 0.515 0.972 23 (1) 66.8 0.34 2s1/2  
(l=0)

8.620 
(0+)

1.07 1.07 0.703 3.8 (3) 124 0.03 1p1/2 
(l=1)

8.776 
(0¯)

1.226 1.074 0.914 410 (20) 475 0.86 2s1/2  

(l=0)

Table  1: Comparison  of  experimental  and  theoretical  features  of  the  low  energy
resonance states at different excitation energies (Ex) in 14N.

2.5. Inputs needed to identify a resonance

The energy range that could be populated in the compound nucleus by capture of the
incoming projectile by the target nucleus is determined by the energy given in the input
and the Q value of the reaction.  The incoming particle energy necessary to populate a
resonant state is known as resonance energy (Er). 

The resonances which are already identified in a particular nucleus can be reproduced to
get an idea of the spectroscopic purity of the state.  For a particular choice of l and j, the
depth of the central potential is varied (normalized) by a factor such that the resonance
energy  is  determined  correctly.   The  ratio  of  widths  of  the  resonance  obtained  in
experiment over theory provides a measure of the spectroscopic factor of that particular
state. 

By  fixing  a  particular  depth  of  the  potential  as  estimated  from  reproducing  known
resonances – unknown resonances can be also identified which corresponds to a specific
single particle orbit (l,j).
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3.    RESULTS AND DISCUSSION

3.1. Study of known proton capture resonances in 14N

The Q value for the reaction 13C+p14N+ is 7550 keV. The ground state spin of 13C is

1/2¯. The known resonances [1] have been reproduced by varying the potential depths.
The single particle orbits are chosen keeping in mind the spin assignment in 14N, as well
as the earlier information of the l value. The results are shown in Figure 1 and Table 1.
Figure 1 shows the features of different resonances in 14N. In Fig 1a, the variation of the
normalization  factor  of  the  potential  to  choose  the  best  value  for  reproducing  the
experimental  resonance energy is  demonstrated for  a  particular  case.   In  Fig  1b,  the
resonance at 8062 keV (1¯), reported to be originated from l=0, has been shown to be
reproduced by the l=2 contribution.  However in Table 1,  the spectroscopic factor has
been calculated for  l=0 contribution only.  Figs  1c and d show the features  for  other
resonances. 

The results show quite good agreement with the experimental data. However, except for
the 0- state at 8776 keV, the spectroscopic factors for the other states do not appear to be
realistic. The normalization factors for the potential corresponding to different shells and
l values are consistent. For d5/2  and s1/2  orbitals, the normalization is less than 1 (~0.91-
0.97),  whereas  for  p1/2,  it  needs  30% reduction  (~0.7),  indicating  that  the  resonance
energies are under predicted with full strength of the potential. However, in Fig.1 b, while
reproducing the resonance (1¯) with d3/2, the resonance energy is over predicted resulting
in a normalization value > 1 (~1.35). 
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Figure 1: Theoretical results for different resonances. See text for details. 

3.2. Comments on resonance states with relatively higher spins

In  the  present  work,  no  excitation  of  the  target  has  been  considered.  With  this
assumption, having a resonance with spin >3 (4) with negative (positive) parity at low
energies (Er< 1000 keV) is unlikely as those will need coupling with l=4 (5) partial wave,
i.e g (h) orbitals. However, such states have been reported in literature [1].  

Thereafter, with normalization around 0.91 as obtained for d5/2 for known resonances, the
energies are varied and a resonance is obtained at ER~0.8 MeV (Fig. 2).  The energy
almost matches with an observed state at 8490 keV with a tentatively assigned spin of
(4¯).  However, having two close-by resonances with same l is also doubtful.  This spin
assignment therefore needs to be revalidated experimentally. 
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Figure 2:  The resonance at Er~0.866 MeV

4.    CONCLUSION

Several proton capture resonances in  14N have been studied theoretically using partial
wave analysis technique. Most of the results agree well with available experimental data.
The spectroscopic factors are determined. The analysis has been extended to indicate that
one of the resonances with uncertain spin may need a change in the assignment. 
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