
Physical effects depend 
on the combination

-term and strong CP problem

-term is CP-violatingθ

θ̄ = θ + Arg Det M

θ

The CP problem:   
so small ?θ̄why 

unrelated

makes the problem worse !



Peccei-Quinn solution and axions

Chiral symmetry allows to rotate away

Spontaneous breaking of  
anomalous global symmetry

Pseudo 
Goldstone Boson

(PGB)

Experiments looking for axions 
use coupling to two photons

Lφγγ = 1
8 gφγγ φ εµναβFµνFαβ = gφγγ φ 'E 'B

cγ
α
π εµναβFµνFαβ

cγ = O(1)

L = 1
Λ π εµναβFµνFαβ

|φ′〉 = cos θ |φ〉 − sin θ |γ〉
|γ′〉 = sin θ |φ〉 + cos θ |γ〉

L = Lfree + gφγγ 'ε · 'B

gφγγ φ 'ε · 'B

'ε · 'B = ε‖B

Lint = Lφγγ

θ % BT
M

1

fa

a

(QCD)- Axion model 
has large breaking  
scale fa

Invisible 
axion

Peccei, Quinn

Interactions
are weak 

∝ f−1

a

Mass
is small

ma ∝ f−1

a



Lφγγ = 1
8 gφγγ φ εµναβFµνFαβ = gφγγ φ 'E 'B

L = 1
Λ π εµναβFµνFαβ

|φ′〉 = cos θ |φ〉 − sin θ |γ〉
|γ′〉 = sin θ |φ〉 + cos θ |γ〉

L = Lfree + gφγγ 'ε · 'B

gφγγ φ 'ε · 'B

ε · 'B = ε‖B

Lint = Lφγγ

θ % BT
M

|kγ − kφ|L & 2π

gφγγB & L and m2
φ/2E & E

two (independent) properties : m

Consider     light PS or S coupled to       γγ

gφγγ ≡

1

M

φ

mass coupling

(Current) axion experiments sensitive to      coupling γγ

Family, Lepton num. sym. familons, majorons
MetaSM theories 0

−

, 0
+

Other GB or PGB

Even for the axion, there might be extra 
contributions to mass, altering relation ma

f−1

a

Light bosons coupled to γγ

Interesting imlications,  cf. SN dimming, ...



Axions
and their relatives

Eduard Massó
(UAB/IFAE)

Tony Grifols
Ramon Toldrà

with: Carla Biggio
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Francesc Rota
Gabriel Zsembinszki
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Andreas Ringwald
Jörg Jäckel
Fuminobu Takahashi
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OUTLINE  OF  THE  TALK

 Strong CP,  PQ, axions, light bosons with

φγγ coupling: consequences / constraints

Ideas to evade astrophysical constraints

Recent results: CAST & PVLAS; the conflict

Planck-induced symmetry breaking and PGB DM

φγγ

Light bosons as Dark Matter

Bounds on forces mediated by light bosons



allows γ → φ and φ → γ

mixing in external B-fieldφγ

photon polarizationstrength of
interaction

Lφγγ = 1
8 gφγγ φ εµναβFµνFαβ = gφγγ

'E 'B

|φ′〉 = cos θ |φ〉 − sin θ |γ〉
|γ′〉 = sin θ |φ〉 + cos θ |γ〉

L = Lfree + gφγγ 'ε · 'B

gφγγ 'ε · 'B

Lint = Lφγγ

θ $ BT
M

xLφγγ = 1
8 gφγγ φ εµναβFµνFαβ = gφγγ

'E 'B

|φ′〉 = cos θ |φ〉 − sin θ |γ〉
|γ′〉 = sin θ |φ〉 + cos θ |γ〉

L = Lfree + gφγγ 'ε · 'B

gφγγ φ 'ε · 'B

Lint = Lφγγ

θ $ BT
M

|kγ′ − kφ′|L % 2π

gφγγBT % L and m2
φ/2E % E

Consequences of φγγ

Primakov-like processes 

(cf. Primakov process for π0
γγ )



Interaction states != Propagation states

1
8 gφγγ φ εµναβFµνFαβ = gφγγ

'E 'B

|φ′〉 = cos θ |φ〉 − sin θ |γ〉
|γ′〉 = sin θ |φ〉 + cos θ |γ〉

transition probability 
after traveling a distance L

Consequences of φγγ

Sikivie
Raffelt, Stodolsky

P (γ → φ) =
1

4
g2

aγ B2

T L2

Coherent effect

* (Valid when )

xLφγγ = 1
8 gφγγ φ εµναβFµνFαβ = gφγγ

'E 'B

|φ′〉 = cos θ |φ〉 − sin θ |γ〉
|γ′〉 = sin θ |φ〉 + cos θ |γ〉

L = Lfree + gφγγ 'ε · 'B

gφγγ φ 'ε · 'B

Lint = Lφγγ

θ $ BT
M

|kγ′ − kφ′|L % 2π

gφγγB % L and m2
φ/2E % E

Condition * 

Lφγγ = 1
8 gφγγ φ εµναβFµνFαβ = gφγγ

'E 'B

|φ′〉 = cos θ |φ〉 − sin θ |γ〉
|γ′〉 = sin θ |φ〉 + cos θ |γ〉

L = Lfree + gφγγ 'ε · 'B

gφγγ φ 'ε · 'B

Lint = Lφγγ

θ $ BT
M

|kγ − kφ|L % 2π

gφγγB % L and m2
φ/2E % E

P (φ → γ) =
1

4
g2
φγγ B2 L2

Lφγγ = 1
8 gφγγ φ εµναβFµνFαβ = gφγγ

'E 'B

|φ′〉 = cos θ |φ〉 − sin θ |γ〉
|γ′〉 = sin θ |φ〉 + cos θ |γ〉

L = Lfree + gφγγ 'ε · 'B

gφγγ φ 'ε · 'B

Lint = Lφγγ

θ $ BT
M

|kγ − kφ|L % 2π

gφγγB % L and m2
φ/2E % E

P (φ → γ) =
1

4
g2
φγγ B2 L2

Lm2

E < 1 E = energy
(in vacuum)



Constraints on φγγ

1. Particle physics

2.  Astrophysical

3. Cosmological

They push (very much) 
terrestrial limits

EM, Toldrà

P (φ→ γ) =
1

4
g2
φγγ B2 L2

Lm2

E < 1

M = g−1
φγγ > 105 GeV

M > 0.9× 1010 GeV
(m < 0.02 eV)

1 105 < M < 6 105 GeV

0.7 < m < 2 meV

(m < 10−9 eV)

e−φ↔ e−γ

γφ↔ e−e+

e− →

Klebart, Rabadan



Astrophysical (Energy Loss Arguments)

Time-scale observation constrains 
exotic energy drain from the star : 

Primakov in 
the stellar plasma

Weakly interacting 
particles leave the star

Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 2× 1010 GeV (m < 10 keV)

M > 109 GeV (m < 50 MeV)

Horizontal 
Branch Stars

Raffelt

Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 2× 1010 GeV (m < 10 keV)

M > 109 GeV (m < 50 MeV)

Production Emission

New energy loss channel accelerates star evolution

Also SN87 A 



Gamma-rays from SN Grifols, EM, Toldrà
Brockway, Carlson, Raffelt

-flux produced in the SN core can be

Lφγγ = 1
8 gφγγ φ εµναβFµνFαβ = gφγγ

'E 'B

|φ′〉 = cos θ |φ〉 − sin θ |γ〉
|γ′〉 = sin θ |φ〉 + cos θ |γ〉

L = Lfree + gφγγ 'ε · 'B

gφγγ φ 'ε · 'B

Lint = Lφγγ

θ $ BT
M

|kγ − kφ|L % 2π

gφγγB % L and m2
φ/2E % E

P (φ → γ) =
1

4
g2
φγγ B2 L2

Part of the 
(partially) converted back to photons in galactic B

Limits on γ -flux  by GRS

ν

at the time of  observation of
-flux in 02.1987

Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 2× 1010 GeV (m < 10 keV)

M > 1012 GeV

(m < 10−9 eV)

Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 2× 1010 GeV (m < 10 keV)

M > 1012 GeV

(m < 10−9 eV)

In future galactic SN, we might get a signal since we have 
now more sensitive gamma-rays detectors in satellites



EM, Toldrà
Klebart, Rabadan

M

m

Text

He burning

γSN-

SN

part. phys.

10
10

GeV

10
5
GeV

10
−3

eV



CAST (CERN) PVLAS (INFN)

Recent experimental results (small masses)



Sitges Cine Festival (Horror and Fantastic) 

Get inspiration
for next experiments !



CAST search

  Idea: Sun is source of axion-like particles. 
Use B to convert them back to photons 

(of few keV , X-rays)

Sikivie

 

NO signal 
(at the moment)

Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 0.9× 1010 GeV
(m < 0.02 eV)

M > 1012 GeV

(m < 10−9 eV)

e−φ↔ e−γ

γφ↔ e−e+

e− →

H(Tf) = Γ(Tf)

Ω = ρ
ρc

τφ

Comparable to 
stellar bounds

K. Zioutas et al. PRL 94 (2005)

Comments: Past helioscopes; Crystal search (Bragg-Primakov)

Helioscope



PVLAS search

ROTATION of polarization plane 
of laser in B field

Selective absorption 
(dichroism)

Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 0.9× 1010 GeV
(m < 0.02 eV)

M > 1012 GeV

(m < 10−9 eV)

e−φ↔ e−γ

γφ↔ e−e+

e− →

H(Tf) = Γ(Tf)

Ω = ρ
ρc

τφ

α = (3.9± 0.5) 10−12 rad/pass

Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 0.9× 1010 GeV
(m < 0.02 eV)

M > 1012 GeV

(m < 10−9 eV)

e−φ↔ e−γ

γφ↔ e−e+

e− →

H(Tf) = Γ(Tf)

Ω = ρ
ρc

τφ

α = (3.9± 0.5) 10−12 rad/pass

B % 5T, L % 1m, N % 4.4 105

E. Zavattini et al. 
hep-ex/0507107, sub. PRL

Light 
polarization

External
field

 A possible  interpretation :Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 0.9× 1010 GeV
(m < 0.02 eV)

1 105 < M < 6 105 GeV

(m < 10−9 eV)

e−φ↔ e−γ

γφ↔ e−e+

e− →

H(Tf) = Γ(Tf)

Ω = ρ
ρc

τφ

α = (3.9± 0.5) 10−12 rad/pass

B % 5T, L % 1m, N % 4.4 105

Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 0.9× 1010 GeV
(m < 0.02 eV)

1 105 < M < 6 105 GeV

(m < 10−9 eV)

e−φ↔ e−γ

γφ↔ e−e+

e− →

H(Tf) = Γ(Tf)

Ω = ρ
ρc

τφ

α = (3.9± 0.5) 10−12 rad/pass

B % 5T, L % 1m, N % 4.4 105

Scale:

Mass:

Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 0.9× 1010 GeV
(m < 0.02 eV)

1 105 < M < 6 105 GeV

0.7 < m < 2 meV

(m < 10−9 eV)

e−φ↔ e−γ

γφ↔ e−e+

e− →

H(Tf) = Γ(Tf)

Ω = ρ
ρc

!ε · !B = ε‖ B



  Even if particle interpretation is correct,

this particle 

would NOT be the standard axion



part. phys.

M

m

PVLAS strength of interaction 
leads to 

PVLAS, CAST & the STARS

Obvious and dramatic conflict  !

Lexotic ∼ 10
6
L!

experimental prospects

Difficult problem; 
not easy to circumvent



Future (experimental)

CAST
higher m (gas)
Lower photon energy

PVLAS 
higher m (gas)

Search induced ellipticity

New experiments welcome

For example post-HERA Ringwald

Lφγγ = 1
8 gφγγ φ εµναβFµνFαβ = gφγγ φ 'E 'B

L = 1
Λ π εµναβFµνFαβ

|φ′〉 = cos θ |φ〉 − sin θ |γ〉
|γ′〉 = sin θ |φ〉 + cos θ |γ〉

L = Lfree + gφγγ 'ε · 'B

gφγγ φ 'ε · 'B

ε · 'B = ε‖B

Lint = Lφγγ

θ % BT
M

|kγ − kφ|L & 2π

gφγγB & L and m2
φ/2E & E

Should be present if 
rotation signal is due to
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Photon Regeneration from Pseudoscalars at X-ray Laser Facilities

Raul Rabadan,1, ∗ Andreas Ringwald,2, † and Kris Sigurdson1, ‡

1Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540
2Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany

Recently, the PVLAS collaboration has reported an anomalously large rotation of the polarization
of light in the presence of a magnetic field. As a possible explanation they consider the existence
of a light pseudoscalar particle coupled to two photons. In this note, we propose a method of
independently testing this result by using a high-energy photon regeneration experiment (the X-ray
analogue of “invisible light shining through walls”) using the synchrotron X-rays from a free-electron
laser (FEL). With such an experiment the region of parameter space implied by PVLAS could be
probed in a matter of minutes.

Many models beyond the Standard Model predict the
existence of new very light pseudoscalar particles which
are very weakly coupled to ordinary matter. Such light
particles would arise if there was a global continuous sym-
metry in the theory that is spontaneously broken in the
vacuum — a notable example being the axion [1] arising
from the breaking of a U(1) Peccei-Quinn symmetry [2],
introduced to explain the absence of strong CP violation.

Such pseudoscalars couple to two photons via

Lφγγ = −
1

4
g φFµν F̃µν = g φ "E · "B, (1)

where g is the pseudoscalar-photon coupling, φ is the field
corresponding to the pseudoscalar, and Fµν (F̃µν) is the
(dual) electromagnetic field strength tensor. Correspond-
ingly, in the presence of a magnetic field "B, a photon of
frequency ω may oscillate into a pseudoscalar particle
of small mass mφ < ω, and vice versa. The exploita-
tion of this result is the basic idea behind photon regen-
eration [3, 4] (sometimes called “invisible light shining
through walls” experiments). Namely, if a beam of light
with N0 photons is shone across a magnetic field, a frac-
tion of these photons will turn into pseudoscalars. This
pseudoscalar beam can then propagate freely through a
wall or another obstruction without being absorbed, and
finally another magnetic field located on the other side of
the wall can transform some of these pseudoscalars into
Nf photons — apparently regenerating these photons out
of nothing. This type of experiment was carried out in
Brookhaven using two prototype magnets for the Collider
Accelerator Beam and was used to exclude values of the
pseudoscalar-photon coupling g < 6.7 × 10−7 GeV−1 for
mφ < 10−3 eV [5].

Recently the PVLAS collaboration has reported an
anomalous signal in measurements of the rotation of the
polarization of photons in a magnetic field [6]. One
a priori possible explanation of this apparent vacuum
magnetic dichroism is the production of a pseudoscalar
coupled to photons through Eq. (1), according to which
photons polarized parallel to the magnetic field disap-
pear, leading to a rotation of the polarization plane [7].
The region quoted in Ref. [6] that might explain this
signal is 1.7 × 10−6 GeV−1 < g < 1.0 × 10−5 GeV−1

for 0.7 × 10−3 eV < mφ < 2.0 × 10−3 eV, obtained
from a combination of previous limits on g vs. mφ from
a similar, but less sensitive polarization experiment in
Brookhaven [5] and the g vs. mφ curve corresponding
to the PVLAS signal. A pseudoscalar-photon coupling
in this region of parameter space is in contradiction with
limits derived from pseudoscalar production in stars [8],
particularly in the sun [9, 10]. However, in principle one
can try to find some non-minimal models where pseu-
doscalar production in stars is small [11] to resolve the
discrepancy with the laboratory result.

The main motivation of this note is to suggest an inde-
pendent laboratory probe of the gφ"E · "B interaction with-
out reference to axion production in stars (see [12, 13]).
Given the unexpected and surprising results found in the
neutrino sector we believe this type of laboratory cross-
check is certainly warranted. Specifically, we consider
the possibility of exploiting a powerful X-ray free-electron
laser in a photon regeneration experiment1 to probe the
region where the PVLAS signal could be explained in
terms of a light pseudoscalar particle.2

Two facilities have designed and, in fact, are about to
commence construction of powerful free-electron lasers
(FEL) in the X-ray range: the Linac Coherent Light
Source (LCLS) at SLAC [16] and the European X-Ray
Laser XFEL at DESY [17]. The LCLS is a free-electron
X-ray laser that will use the last kilometer of the SLAC
linear accelerator. It will be capable of producing intense
pulses of X-ray photons at energies between 0.8 keV and 8
keV. Project completion is expected in 2008 and the first
experiments involving the LCLS will be running in 2009.
The XFEL at DESY starting in 2012 will have several
lasers with similar characteristics with photon energies in
the 1-10 keV range and an average flux of photons of ap-
proximately 1017–1019 photons per second. Already run-
ning at the DESY TESLA Test Facility is an FEL which

1 This idea has been considered first in Ref. [14], with similar sen-
sitivity estimates as in the present note.

2 For the proposal of another photon regeneration experiment ex-
ploiting an ordinary optical laser to test PVLAS, see Ref. [15].
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Recently, the PVLAS collaboration has reported an anomalously large rotation of the polarization
of light in the presence of a magnetic field. As a possible explanation they consider the existence
of a light pseudoscalar particle coupled to two photons. In this note, we propose a method of
independently testing this result by using a high-energy photon regeneration experiment (the X-ray
analogue of “invisible light shining through walls”) using the synchrotron X-rays from a free-electron
laser (FEL). With such an experiment the region of parameter space implied by PVLAS could be
probed in a matter of minutes.

Many models beyond the Standard Model predict the
existence of new very light pseudoscalar particles which
are very weakly coupled to ordinary matter. Such light
particles would arise if there was a global continuous sym-
metry in the theory that is spontaneously broken in the
vacuum — a notable example being the axion [1] arising
from the breaking of a U(1) Peccei-Quinn symmetry [2],
introduced to explain the absence of strong CP violation.

Such pseudoscalars couple to two photons via

Lφγγ = −
1

4
g φFµν F̃µν = g φ "E · "B, (1)

where g is the pseudoscalar-photon coupling, φ is the field
corresponding to the pseudoscalar, and Fµν (F̃µν) is the
(dual) electromagnetic field strength tensor. Correspond-
ingly, in the presence of a magnetic field "B, a photon of
frequency ω may oscillate into a pseudoscalar particle
of small mass mφ < ω, and vice versa. The exploita-
tion of this result is the basic idea behind photon regen-
eration [3, 4] (sometimes called “invisible light shining
through walls” experiments). Namely, if a beam of light
with N0 photons is shone across a magnetic field, a frac-
tion of these photons will turn into pseudoscalars. This
pseudoscalar beam can then propagate freely through a
wall or another obstruction without being absorbed, and
finally another magnetic field located on the other side of
the wall can transform some of these pseudoscalars into
Nf photons — apparently regenerating these photons out
of nothing. This type of experiment was carried out in
Brookhaven using two prototype magnets for the Collider
Accelerator Beam and was used to exclude values of the
pseudoscalar-photon coupling g < 6.7 × 10−7 GeV−1 for
mφ < 10−3 eV [5].

Recently the PVLAS collaboration has reported an
anomalous signal in measurements of the rotation of the
polarization of photons in a magnetic field [6]. One
a priori possible explanation of this apparent vacuum
magnetic dichroism is the production of a pseudoscalar
coupled to photons through Eq. (1), according to which
photons polarized parallel to the magnetic field disap-
pear, leading to a rotation of the polarization plane [7].
The region quoted in Ref. [6] that might explain this
signal is 1.7 × 10−6 GeV−1 < g < 1.0 × 10−5 GeV−1

for 0.7 × 10−3 eV < mφ < 2.0 × 10−3 eV, obtained
from a combination of previous limits on g vs. mφ from
a similar, but less sensitive polarization experiment in
Brookhaven [5] and the g vs. mφ curve corresponding
to the PVLAS signal. A pseudoscalar-photon coupling
in this region of parameter space is in contradiction with
limits derived from pseudoscalar production in stars [8],
particularly in the sun [9, 10]. However, in principle one
can try to find some non-minimal models where pseu-
doscalar production in stars is small [11] to resolve the
discrepancy with the laboratory result.

The main motivation of this note is to suggest an inde-
pendent laboratory probe of the gφ"E · "B interaction with-
out reference to axion production in stars (see [12, 13]).
Given the unexpected and surprising results found in the
neutrino sector we believe this type of laboratory cross-
check is certainly warranted. Specifically, we consider
the possibility of exploiting a powerful X-ray free-electron
laser in a photon regeneration experiment1 to probe the
region where the PVLAS signal could be explained in
terms of a light pseudoscalar particle.2

Two facilities have designed and, in fact, are about to
commence construction of powerful free-electron lasers
(FEL) in the X-ray range: the Linac Coherent Light
Source (LCLS) at SLAC [16] and the European X-Ray
Laser XFEL at DESY [17]. The LCLS is a free-electron
X-ray laser that will use the last kilometer of the SLAC
linear accelerator. It will be capable of producing intense
pulses of X-ray photons at energies between 0.8 keV and 8
keV. Project completion is expected in 2008 and the first
experiments involving the LCLS will be running in 2009.
The XFEL at DESY starting in 2012 will have several
lasers with similar characteristics with photon energies in
the 1-10 keV range and an average flux of photons of ap-
proximately 1017–1019 photons per second. Already run-
ning at the DESY TESLA Test Facility is an FEL which

1 This idea has been considered first in Ref. [14], with similar sen-
sitivity estimates as in the present note.

2 For the proposal of another photon regeneration experiment ex-
ploiting an ordinary optical laser to test PVLAS, see Ref. [15].

2

X!ray

beam

first magnet
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axion beam

second magnet

X!ray

detector

FIG. 1: Schematic figure of the regeneration experiment.

provides tunable radiation from the vacuum-ultraviolet
(10 eV) to soft X-rays (200 eV), with an average flux of
about 1018–1019 photons per second [18].

Our benchmark proposal uses a photon regeneration
set up with two equal magnets of magnetic field B and
length L. The first of them converts the X-ray photons
from the laser beam into pseudoscalars and the second,
on the other side of the “wall”, converts the high-energy
pseudoscalars into X-ray photons again (see Fig. 1). We
consider the sensitivity of two experimental setups: a
superconducting magnet of L = 10 m and B = 10 T and
a conventional magnet with L = 20 m and B = 1 T.
The first setup is more appropriate for the DESY FEL
facilities because of the availability of superconducting
magnets after the decommissioning of the electron-proton
collider HERA in mid of 2007 [19].

The probability of photon-pseudoscalar conversion in
a constant magnetic field of length L is:

P =
1

4
g2B2L2j2

0

(

qL

2

)

= g2B2
sin2

(

qL
2

)

q2
, (2)

where q = ω −
√

ω2 − m2
φ is the difference between the

momentum of the pseudoscalar and the photon. When
the mass of the pseudoscalar is much smaller than the
photon energy, we can approximate q = m2

φ/2ω. For
the magnets and pseudoscalar masses we are considering,
we have qL " 1, so that j0 → 1 and the conversion
probability simplifies to3

P =
1

4
g2B2L2 . (3)

Using magnets of a length of 10 m = 5.07×107 eV−1 and
a magnetic field of 10 T = 1.95×103 eV2, the probability
of converting a photon into a pseudoscalar is

P = 2.4 × 10−9

(

g

10−6 GeV−1

)2 (

B

10 T

)2 (

L

10 m

)2

.

(4)

3 In Ref. [4] it was claimed incorrectly [20] that the use of a light
source of coherence length !c degrades the conversion probabil-
ity by a factor of !c/L, if !c < L. This lead to a substantial
underestimate of the XFEL sensitivity for photon regeneration
in Ref. [19].

FIG. 2: 95% confidence level exclusion region for different
running times: 1 day and 1 year for two different magnets
(a conventional magnet with L = 20 m and B = 1 T and a
superconducting magnet with L = 10 m and B = 10 T). We
have assumed efficient X-ray detection and an X-ray beam
with N0 = 1017 s−1 and ω = 10 keV.

An X-ray laser facility may produce on average as
many as N0 % N17 × 1017 photons per second (where
N17 % 1-100). The number of pseudoscalar particles
that are produced per second is Nφ = PN0. The num-
ber that will be transformed back into photons is just
Nf = PNφ = P 2N0. Thus we find the photon regenera-
tion rate as

Nf = 0.6s−1N17

(

g

10−6 GeV−1

)4 (

B

10 T

)4 (

L

10 m

)4

.

(5)
We immediately see that the PVLAS result can be

tested in a matter of minutes. We summarize the full
mass dependence of these potential bounds and the val-
ues of the pseudoscalar-photon coupling that can be
probed in this way for various running times in Fig. 2.
For the superconducting magnet and single day experi-
ment, the region g > 8.9× 10−8 GeV−1 could be probed
at 95% confidence, while in a year the limit could be
improved to g > 2.0 × 10−8 GeV−1.

Let us summarize why we believe our proposal is of
interest. Firstly, high frequency photons are able to
avoid pseudoscalar-photon incoherent effects, which set
in for m2

φL ≈ 2πω, and can probe pseudoscalar masses4

4 Higher masses can be probed by filling in buffer gas into the
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II) Suppression of production

Suppression F due to a (low scale) form-factor effect 

Required suppression 
to make compatible PVLAS 

with stellar limits 
(and a fortiori with CAST)

III. SUPPRESSION OF THE SOLAR PRODUCTION

Let us investigate now a framework where the production in stellar cores is considerably

diminished. A first thing to notice is that we should look at (1) as an effective lagrangian

and consequently we should not expect it to be valid at arbitrarly high energies. The well

studied π0γγ vertex is similar to (1) and it is useful as a guideline. The crucial point is that

when one of the photons (or both) is off mass-shell the effects of the π0-photon transition

form factor become manifest.

There are indeed a variety of measurements where the transition form factor of pseu-

doscalar mesons can be observed, from moderate q2 up to large momentum transfer [15].

Let us emphasize that the appearance of a form factor is expected on general grounds. From

the theoretical point of view, apart from the phenomenological VMD parameterization, one

gets a form factor when using a quark-triangle model [16], when calculating in perturbative

QCD and when using some other methods [17]. All these approaches are consistent among

themselves and are able to fit the data. For example, when the π0γγ vertex is described by a

quark triangle loop with off-shell photons, the explicit calculation of the diagram leads to a

form factor that can be identified with VMD provided one assigns constituent masses to the

internal up and down quarks [16]. Then, for high q2 one has a suppression M2
ρ/q2 ∼M2

u,d/q
2.

These facts have encouraged us to postulate that the axion-like particle φ is a confined

bound-state of quark-like particles, that we will call preons in accordance with tradition. If

for simplicity we consider one fermion f as the only preon, φ would be the JP = 0− f̄f

bound state and the coupling to two photons would proceed through a triangle loop with f

circulating in it. This would result in the appearance of a form factor effect at high energies.

When both photons are on-shell there is no suppression; these are the conditions in the

PVLAS experiment and in the detection setup in CAST. However, in the solar medium

there would be a suppression of the φ emission rate.

Let us calculate which is the required suppression F in the Primakoff amplitude for having

a consistent scenario. If we call Mpvlas the value in (6) and Mcast the lower bound in (5), we

should have [
|F |2 1

M2
pvlas

]
1

M2
pvlas

<

[
1

M2
cast

]
1

M2
cast

(26)

where in square brackets there is the relevant factor referred to production in the Sun and

outside the brackets the factor corresponding to detection in CAST. In the lhs we assume

8

there is suppression, while in the rhs we assume none because the CAST limit is obtained

assuming no form factor suppression in the solar production. Introducing numbers we obtain

|F | < 2× 10−9 (27)

We now turn our attention to the theoretical prediction for F , that we obtain from

the calculation of the preon-triangle diagram amplitude. For invariant masses s1 and s2

of the photons, and values of the masses of φ, mφ, and the internal fermion f , Mf , the

amplitude F (s1, s2, mφ; Mf ) can be put in terms of dilogarithms [16]. Let us comment that

F is in general a complex quantity and also that, as a form factor, we normalize it as

F (0, 0, mφ; Mf ) = 1.

The values for s1 and s2 in the solar core will be in the keV range. Indeed, in the

interior of the Sun the Primakoff production is started by a photon of the thermal bath with

approximately ω2
P " (0.4 keV)2 " s1, with ωP the plasma frequency. The virtual photon

connecting the vertex to a proton (or to any charged particle) is subject to screening effects,

as discussed in [18]. These effects amount to cut the momenta contributing to the Primakoff

effect with the Debye-Hückle scale kDH , that in the solar core is k2
DH " (9 keV)2 " s2.

Provided the mass Mf is much less than s1 and s2, we obtain a strong suppression

compatible with (27). With the values of s1,2 mentioned above and for mφ ! 10−3 eV (these

are the values for which a coherent effect in vacuum is expected in the PVLAS setup) we

obtain numerically that F satisfies (27) for

Mf ! 2× 10−2 eV (28)

To see a bit more clearly how the suppression arises, we have verified that the exact value

for F , in the limit |s2| # |s1| #Mf # mφ has the behaviour

|F | ∼ 102 (2Mf )2

|s2|
(29)

Thus, Mf plays the role of the cut-off energy scale of the φγγ vertex form factor. The scale

of new physics is again a low energy scale.

Let us comment that, before, we have identified k2
DH with s2 and that it is an approxi-

mation since the t-channel carries other momenta. However, |s2| " k2
DH always, so that, at

the view of (29), the approximation is conservative.
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effective interaction
Lφγγ = 1

8 gφγγ φ εµναβFµνFαβ = gφγγ
'E 'B

L = 1
Λ π εµναβFµνFαβ

|φ′〉 = cos θ |φ〉 − sin θ |γ〉
|γ′〉 = sin θ |φ〉 + cos θ |γ〉

L = Lfree + gφγγ 'ε · 'B

gφγγ φ 'ε · 'B

ε · 'B = ε‖B

Lint = Lφγγ

θ % BT
M

|kγ − kφ|L & 2π
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φ/2E & E
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FIG. 17. Measured (points with error bars) and
numerically estimated (histogram) differential cross sec-
tions for η production in the η → γγ analysis.
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(solid curve) and the CZ wave function (dashed curve).
The dotted curve shows the prediction made with the
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calculate triangle diagram
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there is suppression, while in the rhs we assume none because the CAST limit is obtained

assuming no form factor suppression in the solar production. Introducing numbers we obtain

|F | < 2× 10−9 (27)

We now turn our attention to the theoretical prediction for F , that we obtain from

the calculation of the preon-triangle diagram amplitude. For invariant masses s1 and s2

of the photons, and values of the masses of φ, mφ, and the internal fermion f , Mf , the

amplitude F (s1, s2, mφ; Mf ) can be put in terms of dilogarithms [16]. Let us comment that

F is in general a complex quantity and also that, as a form factor, we normalize it as

F (0, 0, mφ; Mf ) = 1.

The values for s1 and s2 in the solar core will be in the keV range. Indeed, in the

interior of the Sun the Primakoff production is started by a photon of the thermal bath with

approximately ω2
P " (0.4 keV)2 " s1, with ωP the plasma frequency. The virtual photon

connecting the vertex to a proton (or to any charged particle) is subject to screening effects,

as discussed in [18]. These effects amount to cut the momenta contributing to the Primakoff

effect with the Debye-Hückle scale kDH , that in the solar core is k2
DH " (9 keV)2 " s2.

Provided the mass Mf is much less than s1 and s2, we obtain a strong suppression

compatible with (27). With the values of s1,2 mentioned above and for mφ ! 10−3 eV (these

are the values for which a coherent effect in vacuum is expected in the PVLAS setup) we

obtain numerically that F satisfies (27) for

Mf ! 2× 10−2 eV (28)

To see a bit more clearly how the suppression arises, we have verified that the exact value

for F , in the limit |s2| # |s1| #Mf # mφ has the behaviour

|F | ∼ 102 (2Mf )2

|s2|
(29)

Thus, Mf plays the role of the cut-off energy scale of the φγγ vertex form factor. The scale

of new physics is again a low energy scale.

Let us comment that, before, we have identified k2
DH with s2 and that it is an approxi-

mation since the t-channel carries other momenta. However, |s2| " k2
DH always, so that, at

the view of (29), the approximation is conservative.
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Remarks/Next  

To QCD or not to QCD
We have been inspired by QCD, 

qf != 0 but very small 

not to have undesirable consequences
cosmological
astrophysical
laboratory

π
′
s & q

But we dont know if QCD is the reference model 
until last consequences (like it was inTechnicolor)

Future: Model building and look for signatures

If similar to QCD... η vs. η
′

(paraphoton models give arbitrarly epsilon-charges)
Okun

Holdom

Need low energy scale << keV, in any case
For example F ∼ (Λ2/Q2)n Λ a few eV for n=2



Planck-induced symmetry breaking and PGB DM
Light bosons as Dark Matter

Bounds on forces mediated by light bosons

OUTLINE  OF  THE  TALK



Relic density of particles coupled to photons

Lφγγ = 1
8 gφγγ φ εµναβFµνFαβ = gφγγ

'E 'B

|φ′〉 = cos θ |φ〉 − sin θ |γ〉
|γ′〉 = sin θ |φ〉 + cos θ |γ〉

L = Lfree + gφγγ 'ε · 'B

gφγγ φ 'ε · 'B

Lint = Lφγγ

θ $ BT
M

|kγ − kφ|L % 2π

gφγγB % L and m2
φ/2E % E

P (φ → γ) =
1

4
g2
φγγ B2 L2

Work out     decoupling in the early universe

Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 2× 1010 GeV (m < 10 keV)

M > 1012 GeV

(m < 10−9 eV)

e−φ↔ e−γ

γφ↔ e−e+

Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 2× 1010 GeV (m < 10 keV)

M > 1012 GeV

(m < 10−9 eV)

e−φ↔ e−γ

γφ↔ e−e+ (and any other charged 
particle in equilibrium)

Processes 

Freeze-out 

Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 2× 1010 GeV (m < 10 keV)

M > 1012 GeV

(m < 10−9 eV)

e−φ↔ e−γ

γφ↔ e−e+

e− →

H(Tf) = Γ(Tf)
Interaction rate
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Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 2× 1010 GeV (m < 10 keV)

M > 1012 GeV

(m < 10−9 eV)

e−φ↔ e−γ

γφ↔ e−e+

e− →

H(Tf) = Γ(Tf)

Ω = ρ
ρc

Finally Find parameters 
leading to DM     
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'E 'B

|φ′〉 = cos θ |φ〉 − sin θ |γ〉
|γ′〉 = sin θ |φ〉 + cos θ |γ〉
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gφγγ φ 'ε · 'B

Lint = Lφγγ

θ $ BT
M

|kγ − kφ|L % 2π

gφγγB % L and m2
φ/2E % E

P (φ → γ) =
1

4
g2
φγγ B2 L2



Cosmological constraints (Other than BBN)

For larger m, necessary to consider effects of unstableLφγγ = 1
8 gφγγ φ εµναβFµνFαβ = gφγγ

'E 'B

|φ′〉 = cos θ |φ〉 − sin θ |γ〉
|γ′〉 = sin θ |φ〉 + cos θ |γ〉

L = Lfree + gφγγ 'ε · 'B

gφγγ φ 'ε · 'B

Lint = Lφγγ

θ $ BT
M

|kγ − kφ|L % 2π

gφγγB % L and m2
φ/2E % E

P (φ → γ) =
1

4
g2
φγγ B2 L2

Injection of energy m at a finite lifetime 

Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 2× 1010 GeV (m < 10 keV)

M > 1012 GeV

(m < 10−9 eV)

e−φ↔ e−γ

γφ↔ e−e+

e− →

H(Tf) = Γ(Tf)

Ω = ρ
ρc

τφ

Photon Background, CMBR distortion or D-fission
Depending on

Lm2

E < 1

M = g−1
φγγ > 2× 103 GeV

M > 2× 1010 GeV (m < 10 keV)

M > 1012 GeV

(m < 10−9 eV)

e−φ↔ e−γ

γφ↔ e−e+

e− →

H(Tf) = Γ(Tf)

Ω = ρ
ρc

τφ there might be cosmological effects on:
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We have assumed thermal production
due to the coupling to photons

In realistic models : Other couplings 

Other production mechanisms

Most famous example:
QCD-axions is a DM candidate

Dark matter

DM candidates



Planck-mass suppressed

A model with PGB

Global symmetries are expected to be 
  (explicitly) broken 
  by quantum gravity effects

Consider one scalar field, U(1) symmetry

(most simple) 
not invariant piece

 could be 

Exact global symmetry

V = Vsym

SSB implies a true (massless) GB

Global sym. expected to be broken
by gravitation
(Black holes do not conserve global charges)

V = Vsym + Vnon−sym

with Vnon−sym suppressed by MP inverse pow-
ers

SSB?

Simple case: global U(1), scalar field Ψ

Vsym = λ [|Ψ|2 − v2]2

Add small breaking

Vnon−sym =
g

Mn−2
P

|Ψ|nΨ2 + h.c.

(n ≥ 3)

exponentially small

I. INTRODUCTION

It is generally believed that there is new physics beyond the standard model of particle

physics. At higher energies, new structures should become observable. Among them, there

will probably be new global symmetries that are not manifest at low energies. It is usually

assumed that symmetries would be restored at the high temperatures and densities of the

early universe.

However, the restoration of global symmetries might be not completely exact, since

Planck-scale physics is believed to break them explicitly. This feature comes from the fact

that black holes do not have defined global charges and, consequently, in a scattering process

with black holes, global charges of the symmetry would not be conserved [1]. Wormholes

provide explicit mechanisms of such non-conservation [2].

In the present article, we are concerned with the case that the high temperature phase is

only approximately symmetric. The breaking will be explicit, albeit small. In the process

of spontaneous symmetry breaking (SSB), pseudo-Goldstone bosons (PGBs) with a small

mass appear. We explore the cosmological consequences of such particle species, in a simple

model that exhibits the main physical features we would like to study.

The model has a (complex) scalar field Ψ(x) transforming under a global, non-anomalous,

U(1) symmetry. We do not need to specify which quantum number generates the symmetry;

it might be B-L, or a family U(1) symmetry, etc. We assume that the potential energy for

Ψ has a symmetric term and a symmetry-breaking term

V = Vsym + Vnon−sym (1)

The symmetric part of the potential is

Vsym =
1

4
λ[|Ψ|2 − v2]2 (2)

where λ is a coupling and v is the energy scale of the SSB. This part of the potential, as well

as the kinetic term |∂µΨ|2, are invariant under the U(1) global transformation Ψ → eiαΨ.

Without any clue about the precise mechanism that generates Vnon−sym, we work in an

effective theory framework, where operators of order higher than four break explicitly the

global symmetry. The operators would be generated at the Planck scale MP = 1.2 × 1019

GeV and are to be used at energies below MP . They are multiplied by inverse powers of

MP , so that when MP → ∞ the new effects vanish.
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The U(1) global symmetry is preserved by Ψ!Ψ = |Ψ|2 but is violated by a single factor

Ψ. So, the simplest new operator will contain a factor Ψ

Vnon−sym = −g
1

Mn−3
P

|Ψ|n
(

Ψe−iδ + Ψ!eiδ
)

(3)

with an integer n ≥ 4. The coupling in (3) is in principle complex, so that we write it

as g e−iδ with g real. We will consider that Vnon−sym is small enough so that it may be

considered as a perturbation of Vsym. Even if (3) is already suppressed by powers of the

small factor v/MP , we will assume g small. In fact, after our phenomenological study we

will see that g must be tiny.

To study the modifications that the small explicit symmetry breaking term induces in

the SSB process, we use

Ψ = (ρ + v)eiθ/v (4)

with new real fields ρ(x) and the PGB θ(x). Introducing (4) in (3) we get

Vnon−sym = −2 g v4

(

v

MP

)n−3

cos

(

θ

v
− δ

)

+ · · · (5)

The dots refer to terms where ρ(x) is present. We see from (5) that there is a unique vacuum

state, with < θ >= δ v. To simplify, we redefine θ′ = θ − δ v, and drop the prime, so that

the minimum is now at < θ >= 0. From (5) we easily obtain the θ particle mass

m2
θ = 2g

(

v

MP

)n−1

M2
P (6)

Although for the sake of generality we keep the n-dependence in (6), when discussing

numerics and in the figures we particularize to the simplest case n = 4, with the operator

in (3) of dimension five. We will discuss in Section V what happens for n > 4.

To fully specify our model, we finally write the couplings of the PGB θ to other particles.

We have the usual derivative couplings to fermions [3],

Lθff̄ =
g′

2 v
(∂µθ) f̄γµγ5f = gθff̄ θ f̄γ5f (7)

We have no reason to make g′ very different from O(1). To have less parameters we set

g′ = 1 for all fermions and discuss in a final section about this assumption. Then

gθff̄ =
mf

v
(8)
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FIG. 8: Evolution of the normalized fields θ̃ and φ̃ as a function of η = log(t/tcr) with tcr defined

in (A9). We see how φ̃ evolves first while θ̃ remains constant (a), and how θ̃ finally oscillates (b).

Notice the (logarithmic) time scales. For this numerical simulation we chose: v = 1011, λ = 10−2

and g = 10−8.
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We have the usual derivative couplings to fermions [3],

Lθff̄ =
g′

2 v
(∂µθ) f̄γµγ5f = gθff̄ θ f̄γ5f (7)

We have no reason to make g′ very different from O(1). To have less parameters we set

g′ = 1 for all fermions and discuss in a final section about this assumption. Then
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v
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the view of the result, we conclude that one may have PGB as a dark matter candidate for

much larger values of g than obtained before in (28).
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We thank Mariano Quirós and Ramon Toldrà for very useful discussions. We acknowl-

edge support by the CICYT Research Project FPA2002-00648, by the EU network on Su-

persymmetry and the Early Universe (HPRN-CT-2000-00152), and by the Departament

d’Universitats, Recerca i Societat de la Informació (DURSI), Project 2001SGR00188. One
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APPENDIX A

1. How to obtain the effective potential Veff

We present here in some detail how to find the effective potential that gives us a complete

description of the physics involved in our model. Following the standard procedure [30],

taking into account the finite temperature effects, we are led to a new contribution to Vsym,

which is given by

V β =
1

2π2β4
JB[m2β2] =

1

2π2β4

∫ ∞

0

dx x2 ln
[

1 − e−
√

x2+β2m2

]

(A1)

where JB is the thermal bosonic function and β = 1/T , and m2 = −1

2
λv2 + λΨ"Ψ + 1

2
λT 2

is the effective mass. With (A1), we see the behavior of the finite temperature effective

potential. For practical applications, it is convenient to use a high temperature expansion

of V β [31] written in the form

V β #
1

24
m2T 2 −

1

12π
m3T −

1

64π2
m4 ln

m2/T 2

223.63
(A2)

where we have neglected terms independent of the field. The effective potential must contain

the explicit symmetry-breaking term of our model, Vnon−sym. Using for Ψ the parametriza-

tion Ψ = φ eiθ/v, the expression for this term is

Vnon−sym = −2g
φn+1

Mn−3
P

cos

(

θ

v

)

(A3)

Thus, our effective potential will be written as the sum of three terms

Veff = Vsym + V β + Vnon−sym (A4)

18
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angular angular
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FIG. 6: The prohibited region, using all constraints we have studied, is in shadow. In white, we

show the allowed region. The solid line corresponds to Ωθ = 0.3.

29

PGB dark matter

DM 

the particle is stable its density cannot be greater than about the critical density, otherwise

the predicted lifetime of the universe would be too short. If the particle is unstable the

decay products may have a cosmological impact. We have watched out for effects of the

decay products on the CBR and on the cosmological density of light elements.

We have considered all the above potential effects and used empirical data to put con-

straints on g and v. We have been led to exclude the region of the g, v parameter space

indicated in Fig.6.

In Fig.6. we see that there are two allowed regions in the plot. First, in the upper part of

the plot there is an allowed region. It is where τ < 1 s, except the tooth at values that are

about v ∼ 1011 GeV and g ∼ 10−13 that corresponds to 1 s < τ < 300 s (part of zone 6 in

Fig.2). For a θ that has the parameters corresponding to this first region, it will definitely

be extremely difficult to detect the particle. Also, in any case, it will have no cosmological

relevance.

The second permitted zone of the figure is where θ is dark matter, at the bottom of the

plot. It would be an interesting cold dark matter candidate provided the values of g and

v are not far from the solid line in Fig.6. There is an upper limit to the mass mθ in the

allowed region where θ is a dark matter candidate

mθ ! 20 eV (27)

A way to detect θ would be using the experiments that try to detect axions which make

use of the two-photon coupling of the axion. Since a similar coupling to two photons exists

for the PGB, we would see a signal in those experiments [28]. The detection techniques use

coherent conversion of the axion to photons, which implies that in order that θ would be

detected, we should have mθ < 10−3 eV.

For θ be dark matter, we notice that the values of g have to be very small

g < 10−30 (28)

We do not conclude that these values are unrealistically small. Without any knowledge of

how gravity breaks global symmetries it would be premature to argue for or against the order

of magnitude (28). For example, in [29], Peccei elaborates about the explicit gravity-induced

breaking of the Peccei-Quinn symmetry, and gives the idea that perhaps the finite size of a

black hole when acting on microscopic processes further suppresses Planck-scale effects.
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Long-range leptonic forces

A recurrent issue in Particle Physics has been the question of long range fundamental

forces, notably, baryonic and leptonic forces. There is already a considerable amount of

literature [1] on these topics that started with the seminal work by T.D. Lee and C.N. Yang on

long range forces coupled to baryonic charge [2]. From the analysis of Eotvos type experiments,

the hypothetical vector bosons that mediate baryonic forces should couple to baryons with a

strength [3, 4]

αB < 10−46 − 10−47 (1)

where αB is the corresponding ”fine structure constant”. Similarly, Equivalence Principle

tests that probe accelerations of different elements towards the Sun, give a limit to the fine

structure constant associated to leptonic (electronic, indeed) forces [5]

αL < 10−48 − 10−49 (2)

However, we now know that these electronic forces cannot be infinitely ranged because their

associated vector bosons cannot be strictly massless. A zero mass vector boson would imply

exact electronic number conservation and it is by now an established fact that neutrinos

oscillate [6] which implies violation of lepton number. Still, if one insists that the associated

electronic forces extend over astronomical distances, the mass of the vector boson must be

very small. So, the constraint given above (eq. (2)) should be valid for a ”lepto-photon” with

mass less than or about 1.5 × 10−18 eV (i.e. corresponding to ranges larger or about 1 au.)

It is precisely the fact that neutrinos oscillate that we shall exploit in the present paper to

set an improved limit on the electronic coupling constant in eq. (2). Laboratory limits on the

oscillation process have been used in the past to put constraints on the Equivalence Principle

or, conversely, putative violations of the Principle of Equivalence have been suggested as

a source of the solar neutrino deficit [7, 8, 9, 10, 11]. Now that we know that the origin

of the solar neutrino deficit is due to mass related neutrino oscillations, we shall use this

fact as a handle to constrain an extra source of oscillation, namely that due to long range

leptonic forces. Indeed, if a force associated to electron number does really exist then electron

flavor neutrinos transiting the interior of the Sun will feel the influence of the electron number

density in the Sun while muon flavor neutrinos will not. This interaction, whose lepto-photons

should have a Compton wavelength on the order or larger than the radius of the Sun, will

induce a phase shift in the neutrino propagation wave-function that should lead to neutrino

oscillations completely analogous to the way weak interactions lead to oscillations in matter

as first discussed by Wolfenstein [12, 13].

Our starting standpoint is that neutrinos produced in the Sun suffer large mixing angle
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on solar    oscillations
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Solution to       -problem :(LMA) resonant MSW matter oscillations with best-fit parameters given by [14]:

∆m2 = 5.5 × 10−5eV2 , sin2 2θ = 0.83 (3)

as a variety of different experimental inputs indicates. In the case under consideration, the

putative leptonic interaction adds a piece in the hamiltonian that governs the time evolution

of neutrinos. In the flavor basis, this piece enters the interaction hamiltonian as follows

〈νe|Hint|νe〉 =
√

2GFNe + VL (4)

and all other matrix elements vanish.

In eq. (4) Ne is the electron number density and VL is the potential energy of the neutrino

in the field of the leptonic force. It reads, for η ! R−1
" ,

VL(r) =
αL

r

∫ r

0

d3rNe (5)

where η is the lepto-photon mass and the corresponding Yukawa potential has been approxi-

mated to a Coulomb-like one in the distance range of interest. This interaction modifies the

usual neutrino-electron interaction length into

Le = 2π(
√

2GFNe + VL)−1 (6)

The mixing angle in matter is given by the relation

tan 2θm = tan 2θ

(

1 +
LV

Le
sec 2θ

)−1

(7)

where the vacuum oscillation length

LV = 2π(2Eν/∆m2) (8)

In the conventional picture (i.e. for αL ≡ 0 ) and for the values stated in eq. (3), resonant

conversion occurs at 20% − 30% of the solar radius. Now, if we turn on gradually the new

interaction, the resonance region will move to thinner regions of the Sun (i.e. further away

from the solar center). This is due to the repulsive character of the interaction that adds

positively to the weak potential. Treating the potential (5) as a perturbation to the weak

potential we find, upon differentiation of the resonance condition LV = Le cos 2θ,

δ cos 2θ

cos 2θ
+

δ|∆m2|
|∆m2|

= 2EνVL(rres) sec 2θ/|∆m2| (9)

i.e., for the perturbed potential the resonance condition is met for slightly different oscillation

parameters whose relative variations are given by this formula. Now, we can feed the 95%
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Long-range leptonic forces
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New contribution
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Demand not to spoil       solution 

C.L. allowed deviations away from the oscillation parameters in eq. (3) into the above relation

to obtain the maximum αL compatible with the data. To do the numerical work we shall use

a convenient parameterization of the electron number density in the Sun, namely [15]

Ne/NA = 245 e−10.54 r/R! cm−3 (10)

where NA is Avogadro’s number. This fit to the number density is not exact, particularly near

the solar center (in the range 0 − 0.17R"), but this fact is immaterial for our purposes since

i) the resonance position lies beyond 0.26R" and ii) VL itself vanishes in the central region.

So, using the above parameterization for the electron number density and a mean neutrino

energy of 10 MeV (with these inputs rres " 0.27R") we find from eq. (9) the constraint

αL ≤ 6.4 × 10−54. (11)

We have checked that the adiabaticity of the oscillations is preserved when we incorporate the

effects of the leptonic potential with its maximum allowed strength given by eq. (11). Indeed,

we have scanned the whole region enclosed in the 95% C.L. contour of the LMA domain and

found that for no choice of the parameters sin 2θ and |∆m2| the matter oscillation length

LM = LV / sin 2θ at resonance exceeds the width of the resonance in physical space. In fact,

in all instances explored, this latter quantity is much larger than LM . This guarantees that

the neutrino can adjust itself to the matter eigenstate while this latter slowly changes across

the resonance region. Furthermore, we verified explicitly that the resonant transition is fully

contained inside the Sun.

We remind the reader that the above limit on αL is valid only for η ! R−1
" ∼ 10−15 eV. It

is appropriate at this point to say that our phenomenological approach to the issue of lepto-

photon mass could run into serious difficulties should this mass be too small [16, 17]. Indeed,

one might have to face catastrophic decay processes where a huge number of longitudinal

lepto-photons are radiated carrying away the available energy (e.g., a muon decaying into an

electron and invisible energy). However, for the values of αL obtained above (see eq. (11))

and η ∼ 10−15 eV, one can easily verify using the results in ref. [16, 17] that we are still very

far from an infrared catastrophe. In fact, not even one single longitudinal lepto-photon would

be emitted in a muon to electron transition.

To end this paper we should address the question whether screening by the leptonic charges

carried by electron neutrinos and antineutrinos in the relict neutrino background affects the

result just derived. Indeed, the relict neutrinos in the cosmic plasma might effectively screen

the field created by the leptonic charge associated to the electrons in the Sun and therefore

invalidate the bound given in equation (11) above. The problem of screening of leptonic

3
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CONCLUSIONS

If PVLAS signal confirmed,  and it is due a new 
particle coupled to photons, we need a model

 to explain why astrophysical bound are not valid.

We have presented a model where the new particle 
is composite and there is a low energy scale.

The model allows to evade astrophysical constraints.
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