

Ofking groun

SUSY Dark Matter and Colliders

by

Ben Allanach (DAMTP, Cambridge University) BCA, Lester, hep-ph/0507283; BCA, Belanger, Boudjema, Pukhov, JHEP 0412 (2004) 020, hep-ph/0410091

Talk outline

- SUSY dark matter
- Constraints on SUSY models
- Collider measurements

Electroweak Breaking

Both Higgs get vacuum expectation values:

 $\begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix} \rightarrow \begin{pmatrix} v_1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ v_2 \end{pmatrix}$ and to get M_W correct, match with $v_{SM} = 246$ GeV: $\underbrace{v_{SM}}_{v_1} \qquad v_2 \qquad \tan \beta = \frac{v_2}{v_1}$

 $\mathcal{L} = h_t \bar{t}_L H_2^0 t_R + h_b \bar{b}_L H_1^0 b_R + h_\tau \bar{\tau}_L H_1^0 \tau_R$ $\Rightarrow \frac{m_t}{\sin \beta} = \frac{h_t v_{SM}}{\sqrt{2}}, \quad \frac{m_{b,\tau}}{\cos \beta} = \frac{h_{b,\tau} v_{SM}}{\sqrt{2}}.$

The Supersymmetric Standard Model

Standard Model particle
quark, spin 1/2
lepton, spin 1/2
higgs, spin 0
gluon, spin 1
Weak bosons, spin 1
graviton, spin 2

The Supersymmetric Standard Model

For every particle present in The Standard Model, we have a heavier supersymmetric copy with the same quantum numbers and couplings to forces but spin differing by $1/2 \bar{h}$.

Standard Model particle	Supersymmetric copy(s)
quark, spin 1/2	2squarks, spin 0
lepton, spin 1/2	2sleptons, spin 0
$2 \times$ higgs, spin 0	higgsinos, spin 1/2
gluon, spin 1	gluinos, spin 1/2
Weak bosons, spin 1	gauginos, spin 1/2
graviton, spin 2	gravitino, spin 3/2

Broken Symmetry

3 components of the Higgs particles are eaten by W^{\pm}, Z^{0} , leaving us with 5 physical states:

 $h^0, H^0(CP+), \qquad A^0(CP-), \qquad H^{\pm}$

SUSY breaking and electroweak breaking imply particles with identical quantum numbers mix:

SUSY Dark Matter

- Galactic rotation curves
- Gravitational lensing effects
- WMAP + large scale structure

Imposing R_P , the neutralino is a good candidate. Must take into account annihilation in the early universe into ordinary matter:

WMAP Results

WMAP Results

SUSY Prediction of Ωh^2

- Assume relic in thermal equilibrium with $n_{eq} \propto (MT)^{3/2} exp(-M/T).$
- Freeze-out with $T_f \sim M_f/25$ once interaction rate < expansion rate (t_{eq} critical)
- We use microMEGAs $: \Omega h^2 \propto 1/<\sigma v >$ to solve coupled Boltzmann equations
- Generate SUSY spectrum with SOFTSUSY linked with SLHA

Belanger *et al*, CPC 149 (2002) 103 BCA, CPC 143 (2002) 305 BCA et al, JHEP0407 (2004) 036

Universality

Reduces number of SUSY breaking parameters from 100 to 3:

- $\tan\beta \equiv v_2/v_1$
- m_0 , the common scalar mass (flavour).
- $M_{1/2}$, the common gaugino mass (GUT/string).

• A_0 , the common trilinear coupling (flavour). **These conditions** should be imposed at $M_X \sim O(10^{16-18})$ GeV and receive radiative corrections

 $\propto 1/(16\pi^2) \ln(M_X/M_Z).$

PP•\RC

Also, Higgs potential parameter $sgn(\mu)=\pm 1$.

mSUGRA Regions

After WMAP+LEP2, bulk region diminished. Need specific mechanism to reduce overabundance:

- *τ* coannihilation: small m₀, m_{τ̃1} ≈ m_{χ1}⁰.

 Boltzmann factor exp(-ΔM/T_f) controls ratio of species. *τ*₁χ₁⁰ → τγ, *τ*₁*τ*₁ → τ*τ*.
- Higgs Funnel: $\chi_1^0 \chi_1^0 \to A \to b\bar{b}/\tau\bar{\tau}$ at large $\tan \beta$. Also via h at large m_0 small $M_{1/2}$.
- Focus region: Higgsino LSP at large m_0 : $\chi_1^0 \chi_1^0 \rightarrow WW/ZZ/Zh/t\bar{t}.$
- \tilde{t} coannihilation: high $-A_0, m_{\tilde{t}_1} \approx m_{\chi_1^0}$. $\tilde{t}_1 \chi_1^0 \to gt, \tilde{t}\tilde{t} \to tt$

Constraints on SUSY Models

mSUGRA well-studied in literature: eg Ellis, Olive et al PLB565

(2003) 176; Roszkowski et al JHEP 0108 (2001) 024; Baltz, Gondolo, JHEP 0410 (2004) 052;...

Shortcomings

- Really, would like to combine likelihoods from different measurements
- Typically only 2d scans, but in general we have $\alpha_s(M_Z), m_t, m_b, m_0, M_{1/2}, A_0, \tan \beta$ to vary
- Effective 3d type scan done which parameterises a 2d surface of correct Ωh^2
- Baltz *et al* managed to perform a 4d scan, but lost the likelihood interpretation. They used the impressive *Markov Chain Monte Carlo technique*.

Done in 2d in Ellis *et al*, hep-ph/0310356 Ellis *et al*, hep-ph/0411218

Markov-Chain Monte Carlo

Markov chain consists of list of parameter points x(t)and associated likelihoods $\mathcal{L}^{(t)}$

- Pick a point at random for $x^{(1)}$
- 2. Pick a point around $x^{(t)}$ (say with a Gaussian) width) as the potential new point.
- 3. If $\mathcal{L}^{(t+1)} > \mathcal{L}^{(t)}$, the new point is appended onto the chain. Otherwise, the proposed point is accepted with probability $\mathcal{L}^{(t+1)}/\mathcal{L}^{(t)}$. If not accepted, a copy of $x^{(t)}$ is added on to the chain.

Final density of x points $\propto \mathcal{L}$. Required number of points goes *linearly* with number of dimensions.

Ofking grow

Implementation

Input parameters are: m_0 , A_0 , $M_{1/2}$, $\tan \beta$

- $m_t = 172.7 \pm 2.9 \text{ GeV}$
- $m_b(m_b)^{\overline{MS}} = 4.2 \pm 0.2$ GeV,
- $\alpha_s(M_Z)^{\overline{MS}} = 0.1187 \pm 0.002.$

For the likelihood, we also use

- $\Omega_{DM}h^2 = 0.1125^{+0.0081}_{-0.0091}$
- $\delta(g-2)_{\mu}/2 = (19 \pm 8.4) \times 10^{-10}$
- $BR[b \to s\gamma] = (3.52 \pm 0.42) \times 10^{-5}$

Ofking grow

Convergence

We run 9×1000000 points. By comparing the 9 independent chains with random starting points, we can provide a statistical measure of convergence: an upper bound r on the excepted variance decrease for infinite statistics.

Annihilation Mechanism

Define stau co-annihilation when $m_{\tilde{\tau}}$ is within 10% of $m_{\chi_1^0}$ and Higgs pole when $m_{h,A}$ is within 10% of $2m_{\chi_1^0}$.

Region	likelihood
h^0 pole	$0.02{\pm}0.01$
A^0 pole	$0.41 {\pm} 0.03$
$\tilde{\tau}$ co-an	$0.27{\pm}0.04$
\tilde{t} co-an	$(2.1 \pm 4.8) \times 10^{-4}$

Table 0: Likelihood of being in a certain region of mSUGRA parameter space. Likelihood of chain $\tilde{q}_L \rightarrow \chi_2^0 \rightarrow \tilde{l}_R \rightarrow \chi_1^0$ is $24 \pm 4\%$

PP•\RC

Cambridge

Ofking grow

1.5

2

2.5

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0

0.5

1

 $m_{A}^{}\left(TeV\right)$

<u>L</u>/L(max)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Caveats

- Implicitly assumed that LSP constitutes *all* of dark matter
- Assumed radiation domination in post-inflation era. No clear evidence between freeze-out+BBN that this is the case (t_{eq} changes).
- Examples of non-standard cosmology that would change the prediction:
 - Extra degrees of freedom
 - Low reheating temperature
 - Extra dimensional models
 - Anisotropic cosmologies
 - Non-thermal production of neutralinos (late decays?)

LHC (ATLAS)

P<mark>P</mark>•\RC

Collider SUSY Dark Matter Production

Strong sparticle production and decay to dark matter particles.

Cambridge

Q: Can we measure enough to predict σ ?

Collider SUSY Dark Matter Production

Strong sparticle production and decay to dark matter particles.

Any dark matter candidate that couples to hadrons can Cambridge be produced at the LHC

Ofking grou

LHC vs LC in SUSY Measurement

- LHC (start date 2007) produces strongly interacting particles up to a few TeV. Precision measurements of mass *differences* possible if the decay chains exist: possibly per mille for leptons, several percent for jets.
- ILC has several energy options: 500-1000 GeV, CLIC up to 3 TeV. Linear colliders produce less strong particles but much easier to make precision measurements of masses/couplings.

Q: What energy for LC?Q: What do we get from LHC?

LHC/ILC Working Group Report: hep-ph/0410364

Working grout

Coannihilation Slope

$$m_{\tilde{l}_R}^2 \approx m_0^2 + 0.15 M_{1/2}^2, \qquad M_{\chi_1^0} \approx 0.4 M_{1/2}$$

Low enough $M_{1/2} \Rightarrow$ quasi-deegenerate $\tilde{\tau}, M_{\chi}$

Coannihilation Slope

$$m_{\tilde{l}_R}^2 \approx m_0^2 + 0.15 M_{1/2}^2, \qquad M_{\chi_1^0} \approx 0.4 M_{1/2}$$

If we do not assume mSUGRA, we will also have to measure selectron and smuon properties.

SUSY Dark Matter and Colliders

B.C. Allanach – p.24/53

Coannihilation Theory Uncertainties

Expect higher orders to be 100 times smaller than these differences: 3-loop terms could possibly be important!

B.C. Allanach – p.25/53

Orking grout

Coannihilation Theory Uncertainties

Effect of 2-loop RGE terms suggest a possible effect from 3 loops. Jack and Jones find that it's not significant for the neutralino.

Iterative Procedure

What change in a parameter produces a 10% change in Ωh^2 ?

Take a parameter point with $\omega_{-1} \equiv \Omega h^2$. Change *one* parameter at a time by fraction a_0 . Result is ω_0 , then iterate

$$a_{i+1} = a_i \omega_{-1} \frac{10\%}{w_i - \omega_{-1}}.$$

Small accuracy $a \equiv a_{\infty}$ means the parameter has to be known very accurately in order to predict Ωh^2 to 10%.

For parameters that are zero, we take the absolute value as *a* rather than the fractional value.

Uncertainties

We use two approaches to determine what variation of parameters produce a 10% variation in Ωh^2 :

- **PmSUGRA** variation of weak scale parameters (*not* on mSUGRA trajectory): $m_{\chi_1^0}$, M_A , m_b etc.
- mSUGRA simple variation of mSUGRA parameters and experimental inputs: $m_0, M_{1/2}, \alpha_s(M_Z), m_t$ etc.

mSUGRA theory uncertainties estimated by varying scale at which radiative corrections added to sparticle masses:

$$0.5 < x \equiv \frac{M_{SUSY}}{\sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}} < 2, \qquad M_{SUSY} > M_Z$$

mSUGRA Coannihilation Uncertainties

 $a(m_0) \approx a(M_{1/2})$ comes from the sensitivity to $\exp[-(m_{\tilde{\tau}} - M_{\chi_1^0})]$

PP•\RC

mSUGRA Coannihilation Uncertainties

Unknown whether accuracies can be reached - but it looks difficult : $\Delta\Omega h^2 \sim .03$ in diminished bulk region.

Polesello, Tovey, JHEP05 (2004) 071

PP•\RC

supersymmeth

Cambridge

PmSUGRA Coannihilation

RHS: Spectrum useful for optimal energy of linear collider. $\tilde{e}_R, \tilde{\mu}_R$ also possible. Cascade $\tilde{q}_L \rightarrow \chi_2^0 \rightarrow \tilde{e}_R \rightarrow \chi_1^0$ available.

PmSUGRA Coannihilation

LHS: Dependences in left-hand plot all come from the effect on LSP mass.

Need to know $M_{\chi_1^0}$ very accurately.

Working group

PmSUGRA Dependencies

LHS: plots of quantities along mSUGRA slope. Below $\Delta M = 1.78$ GeV, no two-body stau decay. LC studies indicate $\Delta M > 5$ GeV is OK.

PmSUGRA Dependencies

 $\tilde{\tau}_1 \chi_1^0 \to \tau \gamma \propto 3 \cos 2\theta_{\tau} + 5$ from coupling of neutralino to $\tilde{\tau}_{L/R}$.

PmSUGRA Dependencies

 $a(M_{\chi})$ found by keeping ΔM constant, δM by just varying stau mass. $m_{\tilde{e}}, m_{\tilde{\mu}}$ needed to about 1.5%

Orking grout

Slepton Dependence

Accuracy required on $m_{\tilde{l}} - m_{\chi_1^0}$ for WMAP precision. LC studies say this is acheivable, but need more work for $\cos \theta_{\tau}$ (=0.987±0.06 at lower end of slope).

Summary

- Markov chains bring out the multi-dimensionality of the space: is a lot less constrained than in 2d
- Still, current data is constraining
- LHC could produce copious amounts of SUSY dark matter
- Want to measure σ in order to predict Ωh^2 and test cosmological assumptions
- 10% accuracy will require ILC+LHC data
- Can control many uncertainties by measuring additional quantities: Γ_A , $m_{\tilde{\tau}} M_{\chi_1^0}$, ...

- Non mSUGRA case could well be easier.
- Have *not* discussed direct detection yet

Supplementary Material

Likelihood

 $\mathcal{L} \equiv p(d|m)$ is pdf of reproducing data d assuming mSUGRA model m (which depends on parameters).

$$p(m|d) = p(d|m)\frac{p(m)}{p(d)}$$

$$\frac{p(m_1|d)}{p(m_2|d)} = \frac{p(d|m_1)p(m_1)}{p(d|m_2)p(m_2)}$$

Thus, you can interpret the likelihood distribution as relative probabilities if your ratio of priors is 1. Otherwise, convolute it with YOUR priors!

Funnel Slope

$$<\sigma v>^{-1} \sim \frac{4m_{\chi_1^0}\Gamma_A}{g_{m_{\chi_1^0}\tilde{\chi}_1^0A}^2} \left(4\left(\frac{M_A - 2m_{\chi_1^0}}{\Gamma_A}\right)^2 + 1\right).$$

PP•\RC

B.C. Allanach – p.35/53

Funnel Slope

Notice that spectrum is quite *heavy*: need a high energy ILC! Γ_A will be important.

•\RC

Funnel Theory Uncertainties

LHS: Γ_A affected by large $m_b^{SM}/(1 + \Delta_{SUSY})$ corrections since $A \to b\bar{b} \propto Ab\bar{b}$ coupling $\propto m_b \tan \beta$, and $\tan \beta = 50$.

Ofking grow

Funnel Theory Uncertainties

RHS: x > 1.5 yielded $M_A^2 < 0$ ie no EWSB. Strong correlation of theory error with its effect on $(M_A - 2M_{\chi^0})/\Gamma_A$ - could measure it!

Funnel Accuracies

LHS: mSUGRA. $a(m_b)$ worrying. $\alpha_s(M_Z)$ dependence comes about through its effect on $m_b(m_b)$. m_0 , $M_{1/2}$ might be feasible at LHC, m_t possible at ILC. tan β looks impossible.

Funnel Accuracies

SM inputs and $\tan \beta$ uncertainties can be controlled by measuring M_A , Γ_A . $A\chi_1^0\chi_1^0$ coupling $\sim 1/\mu$. $\Gamma_A \propto M_A \tan^2 \beta (m_b^2 + m_\tau^2)$ ($\gamma\gamma$ option of LC, $A \rightarrow \mu\mu$ at LHC).

Working grow

Funnel Accuracies

Mass of χ_1^0 is important, but not mixing (see $a(\mu)$).

Focus Point Slope

Heavy sfermions and A^0 . $M_1 < \mu < M_2$, ie significant Higgsino component ~ 25%.

 $t\bar{t}$ annihilation predominantly through Z. Coannihilation $\equiv \chi_1^0 \chi_i^0$ or $\chi_1^0 \chi_1^{\pm}$. Several competing channels.

Focus mSUGRA Accuracies

 $\delta m_t = 30$ MeV might be possible at future ILC but $a(m_0) < 0.5\%$ looks completely unfeasible.

Focus PmSUGRA Accuracies

Easier outside of mSUGRA, eg μ no longer sensitive to m_t (\propto coupling to neutral goldstone).

LHC SUSY Measurements

BCA, C Lester, A Parker, B Webber, JHEP 09 (2000) 004

Edge Fitting at S5 and O1

PP•\RC

supersymmetry

Working grout

Cambridge

Edge Positions

endpoint	S5 fit	O1 fit
m_{ll}	109.10 ± 0.13	70.47 ± 0.15
$m_{llq} \ edge$	532.1±3.2	544.1 ± 4.0
lq high	483.5 ± 1.8	$515.8{\pm}7.0$
lq low	321.5 ± 2.3	249.8 ± 1.5
llq thresh	266.0 ± 6.4	182.2 ± 13.5

Best case lepton mass measurements can be as accurate as 1 per mille, but jets are a few percent

Edge to Mass Measurements

Mass differences well constrained, but overall mass scale not so well constrained by LHC

Fitting to SUSY Breaking Model

- Experimenters pick a SUSY breaking point
- They derive observables and errors after detector simulation
- We fit this "data" with our codes

BCA, S Kraml, W Porod, JHEP 0303 (2003) 016

SUSY Dark Matter and Colliders

PP•\RC

supersymmetry

Working grout

Cambridge

B.C. Allanach – p.46/53

Other Observables

Often more complicated, eg m_{llq} edge:

 $\max\left[\frac{(m_{\tilde{q}}^2 - m_{\chi_2^0}^2)(m_{\chi_2^0}^2 - m_{\chi_1^0}^2)}{m_{\chi_0^0}^2}, \frac{(m_{\tilde{q}}^2 - m_{\tilde{l}}^2)(m_{\tilde{l}}^2 - m_{\chi_1^0}^2)}{m_{\tilde{t}}^2}\right]$ $\frac{(m_{\tilde{q}}m_{\tilde{l}} - m_{\chi_2^0}m_{\chi_1^0})(m_{\chi_2^0}^2 - m_{\tilde{l}}^2)}{m_{\chi_2^0}m_{\tilde{l}}}\Big]$ Also m_{la}^{high} , m_{la}^{low} , llq threshold , $M_{T_2}^2(m) =$ $\max[M_{T_2}(m_{\chi_1^0})] = m_{\tilde{l}}$ for dislepton production.

SUSY Dark Matter and Collie

B.C. Allanach – p.48/53

Statistics Study

- Choose two model-points: S5 $(m_0 = 100, m_{1/2} = 300, A_0 = 300, \tan \beta = 2.1, \mu > 0)$ and O1 $(m_{\tilde{l}} = 177, m_{1/2} = 306, A_{\tilde{q}} = 137, m_{\tilde{q}} = 0, A_{\tilde{l}} = 306, \tan \beta = 10, \mu > 0)$
- Find cuts to measure "signal" endpoints
- Estimate expected accuracy of ATLAS measurement: 100 fb⁻¹
- Perform χ^2 fits of sparticle masses to expected positions of edges expected from an ensemble of experiments
- Interpret results as statistics of measurement on sparticle masses

Cuts Example

We use ATLFAST2.16, HERWIG6.0, ISAWIG and ISAJET7.42. Assume 100 fb⁻¹ of LHC data.

- $|\eta_j| \le 5, p_T^j \ge 15 \text{ GeV}$
- $p_T^e \ge 5, p_T^\mu \ge 6, |\eta_l| \le 2.5$
- *l* isolation: 10 GeV in $\Delta R = 0.2$, $\Delta R(lj) \ge 0.4$. eg for m_{ll} :
 - 2 OSSF leptons, $p_T^{l_1} \ge p_T^{l_2} \ge 10$ GeV.

• $n_{jets} \ge 2$, $p_T^{j_1} \ge p_T^{j_2} \ge 150$ GeV, $p_T > 300$ GeV OSSF-OSDF subtracts well the Standard Model background.

PP•\RC

Uncertainties in Relic Density

Bulk region: $\tilde{B}\tilde{B} \to Z, h \to l\bar{l}$. Coannihilation: $\tilde{\tau}\chi_1^0 \to \tau + X$

Figure 0: Bulk/coannihilation region. Full: SoftSusy, dotted: SPheno.

SUSY Dark Matter and Colliders

Focus Point

•\RC

Figure 0: Focus point region. Full: SoftSusy, dotted: SPheno, dashed: SuSpect. Higgsino LSP annihilates into ZZ/WW

SUSY Dark Matter and Colliders

B.C. Allanach – p.52/53

High $\tan\beta$

BCA, Belanger, Boudjema, Pukhov, Porod, hep-ph/0402161. Baer et

Figure 0: High $\tan \beta$ region. Full: SoftSusy, dotted: SPheno, dashed: SuSpect. Get annihilation into A.