Results from BABAR & Comparison with Other Experiments

Outline:

- * The Physics Program
- * The CKM Matrix and the Unitary Triangle
- The Unitary Triangle by Sides
- The Unitary Triangle by Angles
- * Search for N.P. & Constraints on the SM
- * The Unexpected
- Conclusions & Perspectives

BABAR Physics Program

Study the flavor sector of the S.M. and search for new physics:

- Unitary Triangle
- CP Violation in B decays
- rare processes involving B,D mesons and τ leptons
- A Disclaimer:
- BABAR and Belle released more than 300 articles to-date
- Many very interesting measurements ~ constant publishing rate
- Will only highlight the most important (based on my own judgment)

2

TOPICS:

- * The Physics Program
- * The CKM Matrix and the Unitary Triangle
- * The Unitary Triangle by Sides
- * The Unitary Triangle by Angles
- * Search for N.P. & Constraints on the SM
- * The Unexpected
- * Conclusions & Perspectives

The CKM matrix

- Expresses in the Standard Model the couping between quarks of different flavour
- Only four independent parameters, three Euler's angles and one phase

$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

• CKM paradigm :

All CP violating phenomena in transitions between hadrons are described in terms of a unique parameter, the CKM phase

The Wolfenstein Parameterization

• An approximation, precise to $o(\lambda^3)$, underlining the observed (*yet unexplained*) hierarchy of CKM parameters

CP Violation : $\eta \neq 0$

CKM and the Unitarity Triangle

- Unitarity Condition:
- Rescaled Triangle:

$$V_{ub}V_{ud} * + V_{cb}V_{cd} * + V_{tb}V_{td} * = 0$$

$$R_{u} + 1 + R_{t} = 0$$

Constraining the UT

- Determine sides and angles of the UT
- Verify consistency, e.g. getting apex coordinates (ρ , η) of UT

7

Constraining the UT

• Determine sides and angles of the UT

8

- Verify consistency, e.g. getting apex coordinates (ρ , η) of UT
 - by intersecting sides $(|R_u|, |R_t|)$

Constraining the UT

• Determine sides and angles of the UT

9

- Verify consistency, e.g. getting apex coordinates (ρ , η) of UT
 - by intersecting sides $(|R_u|, |R_t|)$
 - by intersecting angles (α, β, γ)

TOPICS:

- * The Physics Program
- * The CKM Matrix and the Unitary Triangle
- * The Unitary Triangle by Sides
- * The Unitary Triangle by Angles
- * Search for N.P. & Constraints on the SM
- * The Unexpected
- * Conclusions & Perspectives

parton level

• Apply hard cuts to reduce $b \rightarrow clv$ background $\underline{\Gamma(}$

$$\frac{\Gamma(b \to c \, l \, \bar{\nu})}{\Gamma(b \to u \, l \, \bar{\nu})} \simeq 50$$

Measure partial Branching Ratio ∆Br, get ulv decay width

$$\Gamma(b \to u \, l \, \overline{v}) = \frac{\Delta B r}{\tau_B} \cdot f_u$$

• Compute acceptance correction f_u using QCD-inspired models, educated by data <u>non perturbative</u>

$$f_{u} = \iiint H(q^{2}, E_{l}, M_{X}) \otimes F(k|m_{b}, \Lambda, \mu_{\pi}^{2}...)$$
 "shape function"

- f_{u} depends on non-perturbative parameters
- m_{b} : b-quark mass
- μ_{π}^{2} : b-quark kinetic energy in B hadron rest frame
- Λ : motion of the light quark
- ...

determined in the ansazt of an <u>universal</u> (shape) function from:

- b →sγdecays
- b→clv decays

Compute SF from the (moments of) E_{y} spectrum in b \rightarrow s γ decays:

$$\begin{split} E^{(1)} &= \langle E_{\gamma} \rangle \approx \frac{m_b}{2}, \\ E^{(2)} &= \langle E_{\gamma}^2 - \langle E_{\gamma}^2 \rangle \rangle \approx \mu_{\pi} \approx E_{kin}(b), \end{split}$$

Franco Simonetto INFN & Universita' di Padova

S

15 <u>Measurement of SF parameters from b</u>→clv

- Non-perturbative effects also affect lepton and hadron spectra in b →clv decays
- Measurment of E_l and M_{hadron} moments allow another determination of Shape Function

Errors on SF parameters:

- experimental (measurement of the moments)
- model : non universality (sub-leading S.F.) not shown in the plot

World Average, summer 2005:

$$V_{ub}$$
 | = (4.38±0.19_{exp}±0.27_{theo})10⁻³

$$\Delta V_{ub} / V_{ub} = (3.3_{\text{expt}} \oplus 2.9_{\text{model}} \oplus 4.7_{\text{SF}} \oplus 4.0_{\text{theory}})\% = 7.6\%$$

17

<u>*V*</u>: comparison to exclusive $\mathbf{B} \rightarrow \pi \mathbf{l} \mathbf{v}$

... however ...

 $F_{Bd} \sqrt{B_{Bd}} = 0.192 \pm 0.026 \pm 0.09$

→Large error band in UT plane

$|V_{td}|$ from radiative penguins

$$\frac{\left|V_{td}\right|^{2}}{\left|V_{ts}\right|^{2}} \propto \frac{\Gamma(b \to d\gamma)}{\Gamma(b \to s\gamma)}$$
$$\frac{\Gamma(B \to \rho/\omega\gamma)}{\Gamma(B \to K * \gamma)}$$
Wi

Theoretically clean. Exp. nightmare

ithin exp. reach. Th. concerns: SU(3) Breaking

26

$|V_{td}|$ from radiative penguins

Theoretically clean. Exp. nightmare

Within exp. reach. Th. concerns:

{ Weak Annihilation SU(3) Breaking

27

$|V_{td}|$ from radiative penguins

Theoretically clean. Exp. nightmare

Within exp. reach. Th. concerns:

{ Weak Annihilation SU(3) Breaking

UT sides-view

TOPICS:

- * The Physics Program
- * The CKM Matrix and the Unitary Triangle
- * The Unitary Triangle by Sides
- * The Unitary Triangle by Angles
- * Search for N.P. & Constraints on the SM
- * The Unexpected
- * Conclusions & Perspectives

<u>UT angle-view: $sin 2\beta$ </u>

$\underline{\sin 2\beta \text{ from } b \rightarrow ccs}$

• Determined from interference of decays with and without mixing in $B^0 \rightarrow J/\psi K_{S/L}$

Th. clean:

31 B^0

- Leading interfering penguin has same weak phase as tree
- Other weak phases suppressed by $o(\sin\Theta_c^2) x o(\alpha_s) \sim 1\%$

 f_{CP}

<u>Time-dependent CP Asymmetry</u>

$$A_{CP} = \frac{(B^0 \to f_{CP}) - (B^0 \to f_{CP})}{(B^0 \to f_{CP}) + (\bar{B^0} \to f_{CP})} (\Delta t) = \frac{\Im(\lambda) \sin(\Delta m \Delta t) + (1 - |\lambda^2|) \cos(\Delta m \Delta t)}{1 + |\lambda^2|}$$

$$\lambda = \frac{V_{tb}V_{td}*}{V_{td}V_{tb}*} \frac{V_{cb}V_{cd}*}{V_{cd}V_{cb}*} \frac{V_{cd}V_{cs}*}{V_{cs}V_{cd}*} = e^{-i2\beta}$$
• λ is a pure phase
• $Im(\lambda) = \sin(2\beta)$
• λ is a pure phase
• $Im(\lambda) = \sin(2\beta)$
• λ is a pure phase
• $Im(\lambda) = \sin(2\beta)$
• λ is a pure phase
• $Im(\lambda) = \sin(2\beta)$

33

<u>sin2β: results</u>

- BABAR ~ double statistics by June 2006
- Stay tuned

INFN

sin2β fromb→sss

- Leading weak phase : β
- Other weak phases suppressed by $o(\sin\Theta^2) \sim 5\%$

 f_{CP}

 $(\phi K_{S/L}, \eta' K_{S/L}, \omega K_{S}, K_{S}K_{S}K_{S}, ...)$

New phases from SuSy ?

Exp Challenges:

- Smaller BR
- Larger bckg. (continuum)

35 B^0

<u>UT angle-view: $sin2\alpha$ </u>

• For pure tree transition:

$$\lambda = \frac{V_{td} V_{tb} *}{V_{tb} V_{td} *} \frac{V_{ub} V_{ud} *}{V_{ud} V_{ub} *} = e^{-i2\alpha}$$

Penguin introduces new phase

$$\alpha \rightarrow \alpha_{eff} = \alpha + \kappa$$

• Penguin estimated from Isospin relations:

- BABAR + Belle : BR $(B^0 \rightarrow \pi^0 \pi^0) = (1.45 \pm 0.29) 10^{-6}$
- Sizable Penguin pollution in $B^0 \rightarrow \pi^+ \pi^-$

<u>sin2α fromb→uud</u>

$\underline{B^{0}} \rightarrow \rho^{0} \rho^{0}$:a Fortuitous Set of Beneficent Events

39

• Adding constraints from $B \rightarrow \rho \pi$ Daliz analysis, and neglecting mirror solutions:

α (meas.)	$(99^{+13}_{-8})^o$
UT-fit prediction	$(95\pm7)^{o}$

<u>UT angle-view: γ</u>

- BABAR Physics book (Oct 1998):
- " Possibly the best tools to extract γ are time-dependent asymmetries in $\pmb{B_s}$ decays "
- .. a job for LHC-b ?

$\underline{\gamma}$: the principle

Exploit interference of pure tree transitions:

<u>y: Gronau London Wyler</u>

BaBar

Belle

Belle

Average

Average

BaBar

Belle

Average

BaBar

Average

Belle

- Compare rates for CP even and CP odd D⁰ final states
- Four observables, three independent constraints:

-0.10 ± 0.23 +0.03

 -0.18 ± 0.17

 0.26 ± 0.26

 $-0.27 \pm 0.25 \pm 0.04$

 $0.26 \pm 0.26 \pm 0.03$

 $-0.08 \pm 0.19 \pm 0.08$

 $-0.02 \pm 0.33 \pm 0.07$

-0.26 ± 0.40 ± 0.12

0.6 0.8

 $1.19 \pm 0.50 \pm 0.04$

 -0.08 ± 0.32

Franco Simonetto INFN & Universita' di Padova

44

<u>γ: Atwood Dunietz Soni</u>

• Exploit interference of Cabibbo favored and suppressed D⁰ final states

45

γ: Dalitz Analysis

• Exploit differences in $(\bar{D}^{\flat} \rightarrow K_{\bar{x}} \pi^{+} \pi^{-} Dalitz plots$

46

<u>γ: Dalitz Analysis</u>

• Fit $\Gamma(B^+)$, $\Gamma(B^-)$ in each point of the Dalitz plot

Franco Simonetto INFN & Universita' di Padova

47

<u>Overall γ results</u>

- Dalitz method: first direct measurement of γ !
- Limits on $r_{_{\rm B}}$ from ADS,DGW help improve allowed bounds
- Of main importance to determine the actual value of $r_{_{\rm B}}$

γ (meas.)	$(68 \pm 17)^{o}$
UT-fit prediction	$(58\pm 6)^{o}$

• B-factories operations allow to constrain the UT from different point of views:

• B-factories operations allow to constrain the UT from different point of views:

 $\bar{\rho} = 0.218 \pm 0.043$ $\bar{\eta} = 0.385 \pm 0.028$

• B-factories operations allow to constrain the UT from different point of views:

 $\bar{\rho} = 0.187 \pm 0.052$ $\bar{\eta} = 0.322 \pm 0.025$

• B-factories operations allow to constrain the UT from different point of views:

$$\bar{\rho} = 0.18 \pm 0.12$$
 $\bar{\eta} = 0.41 \pm 0.05$

ρ

Franco Simonetto INFN & Universita' di Padova

N F N

Conclusion on CKM Constraints

- \bullet The S.M. picture of CP is at date perfectly consistent O
- No hint of New Physics from the UT 😕

All the processes

	$\overline{ ho}$	$\overline{\eta}$	$\int \mathbf{U} \mathbf{T}_{fit} = \mathbf{D}^0 \pi^0 \qquad \gamma \qquad \Delta \mathbf{m}_d$
sides	0.218±0.043	0.385±0.028	$\frac{\Delta m_d}{\sin 2\beta}$
angles	0.187±0.052	0.322±0.025	0.6 0.4
tree	0.18±0.12	0.41±0.05	0.2 E _K cos2
all	0.210±0.036	0.347±0.021	
			, I

$$\bar{\rho} = 0.210 \pm 0.036 \quad \bar{\eta} = 0.347 \pm 0.021$$

Franco Simonetto INFN & Universita' di Padova

55

TOPICS:

- * The Physics Program
- * The CKM Matrix and the Unitary Triangle
- * The Unitary Triangle by Sides
- * The Unitary Triangle by Angles
- * Search for N.P. & Constraints on the SM
- * The Unexpected
- * Conclusions & Perspectives

• The Paradigm:

Search for New Physics contributions to processes with low expected yield in the Standard Model :

$$B^{+} \rightarrow \tau^{+} \nu$$

$$B \rightarrow s \gamma$$

$$\tau \rightarrow \mu \gamma, e \gamma, lll, ...$$

<u>A Tree Process: $B^+ \rightarrow \tau^+ v$ </u>

$$\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = \frac{G_F^2 m_B}{8\pi} m_{\tau}^2 \left(1 - \frac{m_{\tau}^2}{m_B^2} \right)_{f_B = 0.192 \pm 0.027 \ GeV(LQCD)}^2 f_B = \frac{(1.0 \pm 0.5) 10^{-4} UT - fit}{(1 - fit)^{-4} UT - fit}$$

- Two (and more) neutrinos: no kin. constraints
- Look for 1/3 prongs τ decays on recoil of reconstructed $B^- \rightarrow D^{(*)}h/lv$

 $\frac{B(B \to \tau v) < 2.6 \ 10^{-4}}{B(B \to \tau v) < 1.8 \ 10^{-4}}$ (90 % CL) BABAR (230 fb⁻¹) B(B → \tau v) < 1.8 \ 10^{-4} (90 % CL) Belle (350 fb⁻¹)

REC

Franco Simonetto INFN & Universita' di Padova

 W^+

Weak Bound on UT

b

<u>A Tree Process: $B^+ \rightarrow \tau^+ v$ </u>

$$\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = \frac{G_F^2 m_B}{8\pi} m_{\tau}^2 \left(1 - \frac{m_{\tau}^2}{m_B^2} \right)_{f_B = 0.192 \pm 0.027}^2 f_B^2 |V_{ub}|^2 \tau_B = \underbrace{\left(1.0 \pm 0.5 \right) 10^{-4} UT - fit}_{f_B = 0.192 \pm 0.027 \ GeV(LQCD)}$$

- Two (and more) neutrinos: no kin. constraints
- Look for 1/3 prongs τ decays on recoil of reconstructed $B^- \rightarrow D^{(*)}h/lv$

 $\frac{B(B \to \tau v) < 2.6 \ 10^{-4}}{B(B \to \tau v) < 1.8 \ 10^{-4}}$ (90 % CL) BABAR (230 fb⁻¹) B(B → \tau v) < 1.8 \ 10^{-4} (90 % CL) Belle (350 fb⁻¹)

- Weak Bound on UT
- ... but improves considerably limits on H⁺ from direct searches

<u>A Penguin Decay: b→ γs</u>

Continuum background reduction:

- ★ sum of 38 exclusive final states
- ★ high-p lepton tag
- * B_{RECO} (hadronic and semileptonic)

... so improve limits on $M(H^+)$ further

Motivation

- Very Rare Processes in the S.M.
- Current results from *v* oscillation imply (at most)

BR($\tau \rightarrow \mu \gamma$) ~ 10⁻⁵⁴ !

• A smoking gun for New Physics

Role of B-factories

- B-factories are $c \tau$ factories !
- $\sigma(\tau^+\tau^-) = 0.89 \text{ nb} \rightarrow 2 \ 10^8 \text{ evts} / \ 100 \text{ fb}^{-1}$
- Improve sensitivity by ~ 10 w.r.t. previous experiments

Tau pair events with LFV1- and 3-prong tag $\tau \rightarrow \mu\gamma$ $\tau \rightarrow e\gamma$ ν_{τ} 1-prong tag $\tau \rightarrow \ell \ell \ell$ $\tau \rightarrow \ell h h$

64

NFN

BABAR $\tau \rightarrow e\gamma$ search

Means of the Searches

- τ produced in pairs, in opposite hemispheres
- "tag-side", from one and three -prong τ decays
- "search-side", no v : constrain

$$E_{vis} = \frac{\sqrt{s}}{2} \qquad M_{vis} = M_{\tau}$$

- search-box ~ 2σ around constraint
- tipical efficiency ~ 5 %

- No significant excess observed (yet)
- Report best limit on the market (when >1 available)

Mode	Exp. / Lum.	90% CL (x 10 ⁷)	
еγ	BABAR (230 fb ⁻¹)	1.1	NEW
μγ	BABAR (230 fb ⁻¹)	0.7	
31	BABAR (90 fb ⁻¹)	1.1-3.3	
31	<i>Belle</i> (90 fb ⁻¹)	1.9-3.5	
eK _s	<i>Belle</i> (280 fb ⁻¹)	0.6	
μK_{s}	<i>Belle</i> (280 fb ⁻¹)	0.5	
<i>l</i> πº, <i>l</i> η, <i>l</i> η'	<i>Belle</i> (150 fb ⁻¹)	1.5 - 10.0	
$\overline{\Lambda}\pi^-$	Belle (150 fb ⁻¹)	1.4	B-L cons.
$\Lambda\pi^-$	<i>Belle</i> (150 fb ⁻¹)	0.7	B-L viol

NFN

TOPICS:

- * The Physics Program
- * The CKM Matrix and the Unitary Triangle
- * The Unitary Triangle by Sides
- * The Unitary Triangle by Angles
- * Search for N.P. & Constraints on the SM
- * The Unexpected
- * Conclusions & Perspectives

- Several new resonances have been observed
- Some good candidates for charmonium
- ... but also something else ...

• ... not fitting any spectroscopic expectation !

BABAR, $Y(4260) \rightarrow J/\psi \pi^+\pi^$ $e^+e^- \rightarrow (J/\psi \pi^+\pi^-)\gamma,\gamma$ not reconstructed also as $B^- \rightarrow (J/\psi \pi^- \pi^+)K^-$?

```
hybrid q \overline{q} g meson?
hep-lat/0512044
```


The Unexpected(2)

Belle, Y(3940) $\rightarrow J/\psi \omega$

observed as $B \rightarrow (J/\psi \omega) K$, also observed in continuum ?

TOPICS:

- * The Physics Program
- * The CKM Matrix and the Unitary Triangle
- * The Unitary Triangle by Sides
- * The Unitary Triangle by Angles
- * Search for N.P. & Constraints on the SM
- * The Unexpected
- Conclusions & Perspectives

- Beauty Factories successfully pursue their program
- Collider performances and detector results outmatch expectations
- This notwithstanding

no crack in the S.M. (yet)

• However ...

Luminosity: Perspectives

- PEP II will cross 500 fb⁻¹ by July 2006 (*x* 2 results shown here)
- By July 2008 ~ 1 ab⁻¹ / experiment (*x*4 *-if approved*)

Luminosity: Perspectives

Franco Simonetto INFN & Universita' di Padova

0

Luminosity: Perspectives

Mc Farlane P5 review:

- discovery of $B \rightarrow \rho^0 \rho^0$ 0
- V_{td} from $B \rightarrow \rho \gamma$ Q

Franco Simonetto INFN & Universita' di Padova

Luminosity: Perspectives

