Neutrino Physics: Goals and Perspectives

Manfred Lindner Technical University Munich

IX Workshop on High Energy Physics Phenomenology Jan. 3-14, 2006 Institute of Physics, Bhubaneswar, India

Motivation: Physics Beyond the SM

New Physics: Neutrino Sources

WHEPP9

Parameters for 3 Light Neutrinos

mass & mixing parameters: m_1 , Δm_{21}^2 , $|\Delta m_{31}^2|$, sign(Δm_{31}^2)

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- oscillations
- astrophysics & cosmology

Kinematical Mass Determination

Sensitivity \Leftrightarrow degenerate ν -spectrum \Rightarrow Oscillations: $\Delta m_{ij}^2 \ll m_i^2 \Rightarrow \qquad \sum m_i^2 |U_{ei}|^2 < (2.2 \text{ eV})^2$

Future: KATRIN \rightarrow 0.25 eV \rightarrow ?

←→ c.f. comological bounds

Manfred Lindner

Neutrino-less Double β-Decay

$$m_1$$
→small → m_{ee} =const. ~ $(\Delta m_{ij}^2)^{1/2}$ ←→ sign (Δm_{31}^2)
 m_1 large → m_{ee} ~ m_1

cosmological bound on m_1 HM-claim \rightarrow , tension'

new experiments: CUORICINO, GERDA→ CUORE, Majorana, ... aim: (Δm₃₁²)^{1/2} ~ 0.05eV

Cosmology: syst. errors \rightarrow X10? 0v2 β – nuclear matrix elements? theory: LR, RPV-SUSY, ...

Iepton number violation

Lightest neutrino (m₁) in eV

Neutrino Oscillation Signals

Manfred Lindner

WHEPP9

K2K confirms atmospheric Δm^2

Testing Solar L/E with KamLAND

The Future of Neutrino Oscillations

 $\frac{\Delta m^2 \text{ and } \theta_{ij} \text{ regions}}{\Rightarrow} \text{ improved oscillation experiments}$ $\Rightarrow \text{ controlled sources & detectors}$

→ long baseline experiments with neutrino beams
→ reactor experiments with identical near & far detector

$$\begin{pmatrix} U_{e_1} & U_{e_2} & U_{e_3} \\ U_{\mu_1} & U_{\mu_2} & U_{\mu_3} \\ U_{\tau_1} & U_{\tau_2} & U_{\tau_3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 x Majorana-
CP-phases
$$\theta_{23} \qquad S_{13} \rightarrow 3 \text{ flavour effects} \qquad \theta_{12} \qquad \text{matter effects}$$

<u>Aims</u>: \rightarrow improved precision of the leading 2x2 oscillations \rightarrow detection of generic 3-neutrino effects: θ_{13} , CP violation

→ precision neutrino physics

Analytic Approximations

- $\Delta = \Delta m_{31}^2 L/4E$
- qualitative understanding \Rightarrow expand in $\alpha = \Delta m_{21}^2 / \Delta m_{31}^2$ and $\sin^2 2\theta_{13}$
- matter effects $\hat{A} = A/\Delta m_{31}^2 = 2VE/\Delta m_{31}^2; \ V = \sqrt{2}G_F n_e$

 $P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \cos^2 \theta_{13} \sin^2 2\theta_{23} \sin^2 \Delta + 2 \alpha \cos^2 \theta_{13} \cos^2 \theta_{12} \sin^2 2\theta_{23} \Delta \cos \Delta$

$$P(\nu_e \to \nu_\mu) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2}$$

 $\pm \sin \delta_{\rm CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\ + \cos \delta_{\rm CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$

+
$$\alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$

analytic discussion / full simulations
 degeneracies, correlations → (sin²2θ₁₃)_{eff}

Cervera et al. Freund, Huber, ML Akhmedov, Johansson , ML, Ohlsson, Schwetz

Degeneracies, Correlations, ...

Fixed L/E → probabilities invarinat under transformations:

- $\theta_{23} \rightarrow \pi/2 \theta_{23}$ Fogli, Lisi P($v_e \rightarrow v_{\mu}$) not really invariant \rightarrow compensation by small parameter off-sets
- $\Delta m^2 \rightarrow -\Delta m^2$ compensated by offset in δ Minakata, Nunokawa
- $P(v_e \rightarrow v_\mu) = const. \rightarrow \delta \theta_{13}$ manifolds Koike, Ota, Sato & Burguet-Castell et al.
- **>** 8-fold degeneracy Barger, Marfatia, Whisnant

- parameter extraction suffers from correlations & degeneracies
- how to break degeneracies & correlations?

The magic Baseline

$$\begin{split} P(\nu_e \to \nu_\mu) &\approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \ \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2} \\ &\pm \ \sin \delta_{\rm CP} \ \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\ &+ \ \cos \delta_{\rm CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\ &+ \ \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2} \end{split}$$

- All terms besides the first vanish for $\sin(\hat{A}\Delta) = 0$
- Condition for uncorrelated sensitivity to θ_{13} $\hat{A}\Delta = \pi$
 - \Rightarrow inserting $\hat{A}=A/\Delta m^2_{31}$, A=2VE, $\Delta=\Delta m^2_{31}L/4E$ one finds

$$L_{magic} = \frac{2\pi}{\sqrt{2}G_F n_e} = 7630 \text{ km} \cdot \frac{\rho}{4.3g/cm^3}$$
 Huber, Winter

Note that this is not the MSW resonance condition

Simulation of Future Experiments

- select a setup (beam, detector, baseline, ...)
- take "most realistic" parameters $\leftarrow \rightarrow$ best guess!
- simulate all relevant aspects as good as possible

	Source	\otimes	Oscillation	\otimes	Detector	
- neutr - flux a - flavor - conta - symn	tino energy E and spectrum ur composition amination netric $\nu/\overline{\nu}$ operat	ion	 oscillation channel realistic baselines MSW matter prof degeneracies correlations 	s ile	 effective mass threshold, responsible particle ID (responsible event reconstance backgrounds x-sections (approximate) 	ss, material solution flavour, charge, truction,) t low E)

• determine the potential: "true" ← → fitted parameters

• compare only realistic simulations (all relevant effects, errors & uncertainties)

A Powerful Simulation Tool

General Long Baseline Experiment Simulator

Comp. Phys. Comm. 167 (2005) 195, hep-ph/0407333

http://www.ph.tum.de/~globes

P. Huber, ML, W. Winter M. Freund, M. Rolinec

- C-based simulation software (GPL = free)
- extensive documentation & examples
- 3 phase approach:
- 1) **AEDL** (Abstract Experiment Definition Language)
- 2) simulation of an experiment \rightarrow 3-v oscillations; scan ,,true values"
- 3) analysis \rightarrow event distriutions,, sensitivities, ...

New Reactor Experiments

Most Advanced Project: Double Chooz

Double Chooz and Triple Chooz

Double Chooz and Ov2\beta

m_{ee} versus m₁

for $\sin^2 2\theta_{13} = 0.2$

Double Chooz ML, Merle, Rodejohann

New Neutrino Beams

- <u>conventional beams, superbeams</u>
 → MINOS, CNGS: (OPERA CARUS, T2K, NOvA, T2H,...
- <u>β-beams</u>

→ pure v_e and v_e beams from radioactive decays; $\gamma \simeq 100...1000$

- <u>neutrino factories</u>
 - \rightarrow clean neutrino beams from decay of stored μ 's

$$P(\nu_e \to \nu_\mu) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2}$$

$$\pm \sin \delta_{CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$$

$$+ \cos \delta_{CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$$

$$+ \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$

correlations & degeneracies

Detectors in a Nutshell

Most important features:

- which leptons can be detected: e, μ, τ
- can particles and anti-particles be distinguished \Leftrightarrow magnetic fields
- detector threshold and beam energy \Rightarrow defines energy window
- ...

Main players:

- water Cherenkov detectors a la SuperK sees e[±], μ[±], i.e. no charge id very good for QE scattering at lower energies
- low Z calorimeter as proposed for NuMI sees e[±], μ[±], i.e. no charge id best for medium energies were QE/DIS both contribute
- magnetized iron detectors sees μ^+ , μ^- , no e and τ

Other players:

- liquid Argon a la ICARUS $\Rightarrow \tau$
- emulsion detectors a la OPERA \Rightarrow sees all channels

Future Long Baseline Projects

K2K	analysis	establish atmospheric oscillations with beam
MINOS	running	expected precision:
OPERA , ICARUS	construction	8% for Δm_{13}^2 , 25% for $\sin^2 \theta_{23}$, θ_{13} ?
T2K	approved	4% for Δm_{13}^2 , 15% for $\sin^2\theta_{23}$, $\Rightarrow \theta_{13}$
ΝΟνΑ	pre-approved	3% for Δm_{13}^2 , 15% for $\sin^2\theta_{23}$ (combined with T2K), $\rightarrow \theta_{13}$, $\rightarrow \delta$?, $\rightarrow \text{sgn}(\Delta m_{13}^2)$
T2H	R&D	
β-beams	R&D	precision neutrino physics
neutrino factory	R&D	
muon collider	•••	

- every stage is a necessary prerequisite for the next
- continuous line of improvements for beams, detectors, physics

Improvement of Δm_{31}^2 and $\sin^2\theta_{23}$ Δm_{31}^2 -precision $\sin^2 \theta_{23}$ -precision 0.4SK+K2K exluded at 30 CNGS MINOS 0.2 Relative error at 20 VOL. CNGS 0 -0.2 SK+K2K current data -0.4 2 4 1 3 2 3 True value of $\Delta m_{31}^2 [10^{-3} \text{ eV}^2]$ True value of $\Delta m_{31}^2 [10^{-3} \text{ eV}^2]$

Huber, ML, Rolinec, Schwetz, Winter

Sensitivity Plots

θ_{13} in the Current LBL Generation

MINOS sensitivity as a function of time:

- MINOS: $3.7 \cdot 10^{20}$ pot/y
- 1,2,5 years

Compare: 5 years, 5% flux uncertainty – CNGS: $4.5 \cdot 10^{19}$ pot/y

- only modest improvements for θ_{13}
- other objectives...

θ_{13} Sensitivity in the Next Generation

- one order of magnitude improvement for $heta_{13}$
- synergies between reactor and accelerator experiments
 - reactor anti-neutrinos \Rightarrow only neutrino beams (x-section)
 - reactor: uncorrelated $\theta_{13} \Rightarrow$ combine with beams & resolve correlations
- synergy between beams \Rightarrow **NOvA** at larges baseline \Rightarrow matter effects

θ_{13} Sensitivity Versus Time

β-beams neutrino factory

Leptonic CP-Violation

<u>assume:</u> $\sin^2 2\theta_{13} = 0.1$, $\delta = \pi/2 \rightarrow \text{combine T2K+NOvA+reactor}$

→ bounds or measurements of leptonic CP-violation
 → leptonic CP-violation in M_R ← → baryon asymetry via leptogenesis

WHEPP9

How to Break Degeneracies & Correlations

Rates only ←→ degeneracies can be resolved by:

- → combination of different oscillation channels
- → use different baselines
- → combine different energies
- ➔ use energy spectrum
- → go to "magic baseline"

All degeneracies can in principle be broken

optimal strategy (physics output / time, money, feasibility) depends on further R&D

Energy Resolution

Rate based degeneracies have different energy spectra

→ use energy resolution to break degeneracies

Silver Channels

Neutrino factory:

- golden channel: wrong sign μ's
- <u>silver channel</u> : τ 's

 \rightarrow different oscillation probabilities...

➔ break degeneracies!

Donini, Meloni, Migliozzi Autiero, et al.

What is precison neutrino physics good for?

unique flavour information tests models / ideas about flavour history: elimination of SMA

The Value of Precision for θ_{13}

- models for masses & mixings
- input: Known masses & mixings
 - \rightarrow distribution of θ_{13} "predictions"
- + θ_{13} often close to experimental bounds
 - → motivates new experiments
 - θ₁₃ controls 3-flavour effects
 like leptonic CP-violation

for example: $\sin^2 2\theta_{13} < 0.01$ \Rightarrow

<u>physics question: why is θ₁₃ so small ?</u>
 → numerical coincidence
 → symmetry

Reference	$\sin\theta_{13}$	$\sin^2 2 heta_{13}$
50(10)		
Goh, Mohapatra, Ng [40]	0.18	0.13
Orbifold SO(10)		
Asaka, Buchmüller, Covi [41]	0.1	0.04
SO(10) + flavor symmetry		
Babu, Pati, Wilczek [42]	$5.5 \cdot 10^{-4}$	$1.2 \cdot 10^{-6}$
Blazek, Raby, Tobe [43]	0.05	0.01
Kitano, Mimura [44]	0.22	0.18
Albright, Dan [45]	0.014	7.8 10-1
Machawa [46]	0.22	0.18
Rozz, Velazeo Sevilla [47]	0.07	0.02
Chen, Mahanthappa [48]	0.15	0.09
Raby [49]	0.1	0.04
SO(10) + texture		
Buchmüller, Wyler [50]	0.1	0.04
Bando, Obara [51]	0.01 0.06	$4 \cdot 10^{-4} \dots 0.01$
Flavor symmetries		
Crimuz Lououra [52, 52]	0	0
Grimus, Levoure [52]	03	03
Babu, Ma, Valle [54]	0.14	0.08
Kuchimanchi, Mohapatra [55]	0.08 0.4	0.03 0.5
Ohlsson, Seidi [50]	0.07 0.14	0.02 0.08
King, Ross [57]	0.2	0.15
Textures		
Honda, Kaneko, Tanimoto [58]	0.08 0.20	0.03 0.15
Lebed, Martin [59]	0.1	0.04
Bando, Kaneko, Obara, Tanimoto [60]	$0.01 \dots 0.05$	$4 \cdot 10^{-1} 0.01$
Ibarra, Ross [61]	0.2	0.15
3×2 see-saw		
Appelquist, Piai, Shock [62, 63]	0.05	0.01
Frampton, Clashew, Yanagida [64]	0.1	0.04
Mei, Xing [65] (normal hierarchy)	0.07	0.02
(inverted hierarchy)	> 0.006	$> 1.6 \cdot 10^{-4}$
Anarchy		
de Gouvêa, Murayama [66]	> 0.1	> 0.04
Renormalization group enhancement Mohapatra, Parida, Rajasekaran [67]	0.08 0.1	0.03 0.04

Further Implications of Precision

Precision allows to identify / exclude:

- special angles: $\theta_{13} = 0^{\circ}$, $\theta_{23} = 45^{\circ}$, ... $\leftarrow \rightarrow$ discrete f. symmetries?
- special relations: $\theta_{12} + \theta_C = 45^\circ$? $\leftarrow \rightarrow$ quark-lepton relation?
- quantum corrections
 renormalization group evolution

Provides also measurements or tests of:

- **MSW effect** (coherent forward scattering and matter profiles)
- cross sections
- 3 neutrino unitarity **< >** sterile neutrinos with small mixings
- neutrino decay (admixture...)
- decoherence
- NSI
- MVN, ...

Neutrino Mass Terms

<u>1) Postulate right handed neutrino fields -> SM+</u>

Natural value of mass operators: scale of symmetry

 $m_D \sim$ electro-weak scale

 $M_R \sim$ embedding into GUT $\leftarrow \rightarrow$ L violation scale

<u>See-saw mechanism (type I)</u> $m_v = m_D M_R^{-1} m_D^T$

$$\mathbf{m}_{\mathbf{h}} = \mathbf{M}_{\mathbf{R}}$$

Numerical hints:

For $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim leptons \Rightarrow M_R \sim 10^{11} - 10^{16} \text{GeV}$ $\Rightarrow v$'s are Majorana particles, m_v probes $\sim \text{GUT scale physics!}$ \Rightarrow smallness of $m_v \notin \Rightarrow$ high scale of L, symmetries of m_D , M_R

More Neutrino Mass Operators

2) new Higgs triplets Δ :

 $M_{I}LL^{\overline{c}}$ →left-handed Majorana mass term

3) Both $v_{\rm R}$ and new Higgs triplets $\Delta_{\rm L}$:

- \rightarrow see-saw type II $m_v = M_I m_D M_B^{-1} m_D^T$
- 4) Higher dimensional operators: d=5, ...

 $\Leftrightarrow \quad \mathcal{L}_{\text{mass}} = \kappa \cdot \overline{\nu}_{L}^{C} \nu_{L} \Phi^{T} \Phi$ $\Rightarrow \mathbf{M}_{L} \mathbf{L} \mathbf{L}^{C}$

5) More speculative things ...

The larger Picture: GUTs

Gauge unification suggests that some GUT exists

Requirements: gauge unification, particle multiplets (e.g. v_R), proton decay, ...

GUT Expectations and Requirements

Quarks and leptons sit in the same multiplets

- → one set of Yukawa coupling for given GUT multiplet
- \rightarrow ~ tension: small quark mixings $\leftarrow \rightarrow$ large leptonic mixings
- this was in fact the reason why many `predicted' small mixing angles (SMA) – ruled out by data

Mechanisms to post-dict large mixings:

- → sequential dominance
- →...
- ➔ Dirac screening

Single right-handed Dominance

$$m_D = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & a & b \\ \cdot & c & d \end{pmatrix} \qquad M_R = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & x & 0 \\ \cdot & 0 & y \end{pmatrix}$$

$$\rightarrow m_{\nu} = -m_D \cdot M_R^{-1} \cdot m_D^T = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \frac{a^2}{x} + \frac{b^2}{y} & \frac{ac}{x} + \frac{bd}{y} \\ \cdot & \frac{ac}{x} + \frac{bd}{y} & \frac{c^2}{x} + \frac{d^2}{y} \end{pmatrix}$$

If one right-handed neutrino dominates, e.g. y >> x

- \rightarrow small sub-determinant ~ m₂.m₃
- \rightarrow m₂ << m₃ i.e. a natural hierrachy
- → $\tan \theta_{23} \simeq a/c$ i.e. naturally large mixing

Sequential Dominance

$$m_D = \begin{pmatrix} a & b & c \\ d & e & f \\ g & e & h \end{pmatrix} \qquad M_R = \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{pmatrix}$$

$$m_{\nu} = -m_D \cdot M_R^{-1} \cdot m_D^T = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}$$

sequenatial dominance: z >> y >> x
→ small determinant ~ m₁ . m₂ . m₃
→ m₁ << m₂ << m₃ natural
→ naturally large mixings

Flavour Unification

- so far no understanding of flavour, 3 generations
- apparant regularities in quark and lepton parameters
- → flavour symmetries

GUT \otimes Flavour Unification

- So far no understanding of flavour, 3 generations
- Regularities in quark and lepton parameters
- Hints for unification
- → GUT group ⊗ continuous, gauged flavour group
- for example SO(10) \otimes SU(3)_{flavour}
- Generations are 3_F
- SSB of SU(3)_{flavour} between Λ_{GUT} and Λ_{Planck}
 - → all flavour Goldstone Bosons eaten
 - → discrete (ungauged) sub-group survives ←→ SSB potential
 - → e.g. Z2, S3, D5, A4, ...
 - → structures in flavour space

GUT \otimes Flavour Challenges

- GUT \otimes flavour is rather restricted
 - small quark mixings
 - large leptonic mixings
 - → from unified GUT ⊗ flavour representations
 - ➔ strong links between Yukawa couplings
- Difficulty grows with
 - size of flavour symmetry
 - size of the GUT group
 - → so far only a few viable models
 - → limited possibilities
- Hope: Distinguish models by future precision
- Question: Is it possible to systematically unlock the Yukawa structures in a GUT \otimes flavour model

Dirac Screening

Question: Do neutrino masses in GUT ⊗ flavour scenarios always depend on the same Yukawa couplings? → no

Assume:
$$\mathbf{v}_{\mathbf{L}}, \mathbf{v}_{\mathbf{R}}^{\mathbf{C}}, \mathbf{S} \rightarrow \qquad \mathcal{M} = \begin{pmatrix} 0 & Y_{\nu} \langle \phi \rangle & 0 \\ Y_{\nu}^{T} \langle \phi \rangle & 0 & Y_{N}^{T} \langle \sigma \rangle \\ 0 & Y_{N} \langle \sigma \rangle & M_{S} \end{pmatrix}$$

→ double seesaw

$$m_{
u}^{0} = \left[rac{\langle \phi
angle}{\langle \sigma
angle}
ight]^{2} Y_{
u} \left(Y_{N}
ight)^{-1} M_{S} \left(Y_{N}^{T}
ight)^{-1} Y_{
u}^{T}$$

fit fermions into GUT representations relation between Yukawa couplings, e.g. E6 $Y_{\nu} = c \cdot Y_{N}$

Consequences of Screening

Complete screening of Dirac structure

$$m_
u = c^2 \left[rac{\langle \phi
angle}{\langle \sigma
angle}
ight]^2 M_S$$

Consequences:

- Neutrino masses emerge completely from Planck scale physics
 generically different from quarks
- Dirac Yukawa structure (small mixings) screened
- Hierarchical neutrino spectrum not required in see-saw
- Quark-lepton complimentarity is easily possible
- With or without degenerate neutrino masses
- Double see-saw predics for M_R from first see-saw to be lower than GUT scale by a factor <s>/M_S² 10⁻³
 ←→ better fit to masses

The Interplay of Topics

Conclusions

neutrinos as probes

Manfred Lindner

WHEPP9