Lepton Family Symmetries for Neutrino Masses and Mixing

Ernest Ma Physics Department University of California Riverside, CA 92521, USA

Contents

- Some Basics
- Some Discrete Symmetries
- Tetrahedral Symmetry A_4
- \mathcal{M}_l , \mathcal{M}_{ν} , $U_{l\nu}$
- Neutrino Mass Models
- S_4 and B_4
- Some Remarks

Some Basics

$$\mathcal{M}_{l} = U_{L}^{l} \begin{pmatrix} m_{e} & 0 & 0 \\ 0 & m_{\mu} & 0 \\ 0 & 0 & m_{\tau} \end{pmatrix} (U_{R}^{l})^{\dagger},$$
$$\mathcal{M}_{\nu}^{D} = U_{L}^{\nu} \begin{pmatrix} m_{1} & 0 & 0 \\ 0 & m_{2} & 0 \\ 0 & 0 & m_{3} \end{pmatrix} (U_{R}^{\nu})^{\dagger},$$
$$\mathcal{M}_{\nu}^{M} = U_{L}^{\nu} \begin{pmatrix} m_{1} & 0 & 0 \\ 0 & m_{2} & 0 \\ 0 & 0 & m_{3} \end{pmatrix} (U_{L}^{\nu})^{T},$$

$$U_{l\nu} = (U_L^l)^{\dagger} U_L^{\nu} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$
$$\simeq \begin{pmatrix} 0.83 & 0.56 & < 0.2 \\ -0.39 & 0.59 & -0.71 \\ -0.39 & 0.59 & 0.71 \end{pmatrix}$$
$$\simeq \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix} \sim (\eta_8, \eta_1, \pi^0)$$

[Harrison, Perkins, Scott (2002)]

How can the HPS form of $U_{l\nu}$ be derived from a symmetry? The difficulty comes from the fact that any symmetry defined in the basis $(\nu_e, \nu_\mu, \nu_\tau)$ is automatically applicable to (e, μ, τ) in the complete Lagrangian. Usually one assumes the canonical seesaw mechanism and studies

$$\mathcal{M}_{\nu} = -\mathcal{M}_{\nu}^{D}\mathcal{M}_{N}^{-1}(\mathcal{M}_{\nu}^{D})^{T}$$

in the basis where \mathcal{M}_l is diagonal. But the symmetry apparent in \mathcal{M}_{ν} is often incompatible with a diagonal \mathcal{M}_l with eigenvalues m_e, m_μ, m_τ . Consider just 2 families. Suppose we want maximal $\nu_{\mu} - \nu_{\tau}$ mixing, then

$$\mathcal{M}_{\nu} = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a+b & 0 \\ 0 & a-b \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

This seems to require the exchange symmetry $\nu_{\mu} \leftrightarrow \nu_{\tau}$, but since (ν_{μ}, μ) and (ν_{τ}, τ) are $SU(2)_L$ doublets, we must also have $\mu \leftrightarrow \tau$ exchange. We now have the option of assigning μ^c and τ^c . If $\mu^c \leftrightarrow \tau^c$ exchange is also assumed, then

$$\mathcal{M}_{l} = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} A+B & 0 \\ 0 & A-B \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Hence $U_{l\nu} = (U_L^l)^{\dagger} U_L^{\nu} = 1.$

If μ^c and τ^c do not transform under this exchange, then

$$\mathcal{M}_{l} = \begin{pmatrix} A & B \\ A & B \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2(A^{2} + B^{2})} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c & s \\ -s & c \end{pmatrix},$$
where $c = A/\sqrt{A^{2} + B^{2}}$, $s = B/\sqrt{A^{2} + B^{2}}$.

Again $U_{l\nu} = (U_L^l)^{\dagger} U_L^{\nu} = 1.$

Some Discrete Symmetries

solid	faces	vert.	Plato	Hindu	sym.
tetrahedron	4	4	fire	Agni	A_4
octahedron	8	6	air	Vayu	S_4
cube	6	8	earth	Prithvi	S_4
icosahedron	20	12	water	Jal	A_5
dodecahedron	12	20	quintessence	Akasha	A_5

Compare this to today's TOE, i.e. string theory. There are 5 consistent theories in 10 dimensions: Type I is dual to Heterotic SO(32), Type IIA is dual to Heterotic $E_8 \times E_8$, and Type IIB is self-dual.

- Plato inferred the existence of the fifth element (quintessence) from the mismatch of the 4 known elements (fire, air, water, earth) with the 5 perfect geometric solids.
- Glashow, Iliopoulos, and Maiani inferred the existence of the fourth quark (charm) from the mismatch of the 3 known quarks (up,down,strange) with the 2 charged-current doublets $(u, d \cos \theta_C + s \sin \theta_C)$ and $(?, -d \sin \theta_C + s \cos \theta_C)$.

Question: What sequence has ∞ , 5, 6, 3, 3, 3, ...? Answer: Perfect geometric solids in 2,3,4,5,6,7,... dimensions. In 4 space dimensions, they are:

solid	composition	faces	vertices
4-simplex	tetrahedron	5	5
4-crosspolytope	tetrahedron	16	8
4-cube	cube	8	16
600-cell	tetrahedron	600	120
120-cell	dodecahedron	120	600
24-cell	octahedron	24	24

Tetrahedral Symmetry A_4

For 3 families, we should look for a group with a $\underline{3}$ representation, the simplest of which is A_4 , the group of the even permutation of 4 objects.

class	n	h	χ_1	$\chi_{1'}$	$\chi_{1''}$	χ_3
C_1	1	1	1	1	1	3
C_2	4	3	1	ω	ω^2	0
C_3	4	3	1	ω^2	ω	0
C_4	3	2	1	1	1	-1

$$\omega = \exp(2\pi i/3) = -1/2 + i\sqrt{3}/2$$

Multiplication rule:

 $\underline{3} \times \underline{3} = \underline{1}(11 + 22 + 33) + \underline{1}'(11 + \omega^2 22 + \omega 33)$ $+ 1''(11 + \omega 22 + \omega^2 33) + 3(23, 31, 12) + \underline{3}(32, 13, 21).$

Note that $\underline{3} \times \underline{3} \times \underline{3} = \underline{1}$ is possible in A_4 , i.e. $a_1b_2c_3$ + permutations, and $\underline{2} \times \underline{2} \times \underline{2} = \underline{1}$ is possible in S_3 , i.e. $a_1b_1c_1 + a_2b_2c_2$.

$\mathcal{M}_l, \mathcal{M}_\nu, U_{l\nu}$

Consider $(\nu_i, l_i) \sim \underline{3}$ under A_4 , then \mathcal{M}_{ν} is of the form

$$\mathcal{M}_{\nu} = \begin{pmatrix} a+b+c & f & e \\ f & a+\omega b+\omega^2 c & d \\ e & d & a+\omega^2 b+\omega c \end{pmatrix}$$

where a comes from $\underline{1}$, b from $\underline{1}'$, c from $\underline{1}''$, and (d, e, f) from $\underline{3}$.

In this basis, \mathcal{M}_l is generally not diagonal, but under A_4 , there are two interesting cases.

(I) Let $l_i^c \sim \underline{1}, \underline{1}', \underline{1}''$, then with $(\phi_i^0, \phi_i^-) \sim \underline{3}$,

$$\mathcal{M}_{l} = \begin{pmatrix} h_{1}v_{1} & h_{2}v_{1} & h_{3}v_{1} \\ h_{1}v_{2} & h_{2}\omega v_{2} & h_{3}\omega^{2}v_{2} \\ h_{1}v_{3} & h_{2}\omega^{2}v_{3} & h_{3}\omega v_{3} \end{pmatrix}$$
$$= \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{pmatrix} \begin{pmatrix} h_{1} & 0 & 0 \\ 0 & h_{2} & 0 \\ 0 & 0 & h_{3} \end{pmatrix} \sqrt{3}v$$

for
$$v_1 = v_2 = v_3 = v$$
.

(II) Let $l_i^c \sim \underline{3}$, but $(\phi_i^0, \phi_i^-) \sim \underline{1}, \underline{1}', \underline{1}''$, then $\mathcal{M}_l = \begin{pmatrix} m_e & 0 & 0 \\ 0 & m_\mu & 0 \\ 0 & 0 & m_\tau \end{pmatrix}$.

In either case, it solves the fundamental theoretical problem of having a symmetry for the neutrino mass matrix even though the charged-lepton mass matrix has three totally different eigenvalues. To proceed further, the 6 parameters of \mathcal{M}_{ν} must be restricted, from which $U_{l\nu}$ may be obtained.

$$U_{L}^{\dagger} \mathcal{M}_{\nu} U_{L}^{*} = \mathcal{M}_{\nu}^{(e,\mu,\tau)} = U_{l\nu} \begin{pmatrix} m_{1} & 0 & 0 \\ 0 & m_{2} & 0 \\ 0 & 0 & m_{3} \end{pmatrix} (U_{l\nu})^{T},$$

where (I)

$$U_L = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^2\\ 1 & \omega^2 & \omega \end{pmatrix},$$
and (II) $U_L = 1$.

Neutrino Mass Models

Using (I), the first two proposed A_4 models start with only $a \neq 0$, yielding thus 3 degenerate neutrino masses. In Ma/Rajasekaran(2001), the degeneracy is broken softly by N_iN_j terms, allowing b, c, d, e, f to be nonzero. In Babu/Ma/Valle(2003), the degeneracy is broken radiatively through flavor-changing supersymmetric scalar lepton mass terms. In both cases, $\theta_{23} \simeq \pi/4$ is predicted. In BMV03, maximal CP violation in $U_{l\nu}$ is also predicted. Consider the case b = c and e = f = 0, then

$$\mathcal{M}_{\nu}^{(e,\mu,\tau)} = \begin{pmatrix} a+2d/3 & b-d/3 & b-d/3 \\ b-d/3 & b+2d/3 & a-d/3 \\ b-d/3 & a-d/3 & b+2d/3 \end{pmatrix}$$
$$= a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} + \frac{d}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
$$= U_{l\nu} \begin{pmatrix} a-b+d & 0 & 0 \\ 0 & a+2b & 0 \\ 0 & 0 & -a+b+d \end{pmatrix} (U_{l\nu})^{T}$$

and

$$U_{l\nu} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

i.e. tribimaximal mixing would be achieved.

However, although $b \neq c$ would allow $U_{e3} \neq 0$, the assumption e = f = 0 and the bound $|U_{e3}| < 0.16$ imply $0.5 < \tan^2 \theta_{12} < 0.52$.

Experimentally, $\tan^2 \theta_{12} = 0.45 \pm 0.05$.

Models based on (I) with $d \neq 0$ and e = f = 0:

- Ma(2004)
- Altarelli/Feruglio(2005-1/2): b = c = 0.

• Ma(2005-1):
$$a = 0, [b = c].$$

- Babu/He(2005): b = c, $d^2 = 3b(b a)$.
- Zee(2005): [b = c].
- Ma(2005-5): b = c.

Particle content of models based on (I):

$A_4(I)$	ϕ^+,ϕ^0	N	ξ^{++},ξ^+,ξ^0	χ^0	SUSY
MR01	1,3	3			no
BMV01	1,1	3		3	yes
M04	3	_	$1,1^{\prime},1^{\prime\prime},3$		no
AF05-1	1,1	_		1,3,3	no
M05-1	3	_	$1^\prime, 1^{\prime\prime}, 3$		no
BH05	1,1	3		1,1,3,3	yes
Z05	3	_			no
M05-5	1,1	3		3	yes
AF05-2	1,1	_		1,1,1,3,3,3,3	yes

$$M05-5 \ [Ma, \ hep-ph/0511133]$$
$$\mathcal{M}_D = U_L^{\dagger} \begin{pmatrix} m_D & 0 & 0 \\ 0 & m_D & 0 \end{pmatrix}, \ \mathcal{M}_N = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$$

$$\begin{bmatrix} 0 & 0 & m_D \end{bmatrix} \qquad \begin{bmatrix} 0 & C & B \end{bmatrix}$$

imply e = f = 0 and b = c. To obtain this \mathcal{M}_N , consider

$$W = \frac{1}{2}m_N(N_1^2 + N_2^2 + N_3^2) + fN_1N_2N_3$$
$$-\frac{\lambda_1}{4M_{Pl}}(N_1^4 + N_2^4 + N_3^4) + \frac{\lambda_2}{2M_{Pl}}(N_2^2N_3^2 + N_3^2N_1^2 + N_1^2N_2^2)$$

+

C

$$V = |m_N N_1 + f N_2 N_3 + \frac{\lambda_1}{M_{Pl}} N_1^3 + \frac{\lambda_2}{M_{Pl}} N_1 (N_2^2 + N_3^2)|^2 + |m_N N_2 + f N_3 N_1 + \frac{\lambda_1}{M_{Pl}} N_2^3 + \frac{\lambda_2}{M_{Pl}} N_2 (N_3^2 + N_1^2)|^2 + |m_N N_3 + f N_1 N_2 + \frac{\lambda_1}{M_{Pl}} N_3^3 + \frac{\lambda_2}{M_{Pl}} N_3 (N_1^2 + N_2^2)|^2.$$

The usual solution of V = 0 is $\langle N_{1,2,3} \rangle = 0$, but the following is also possible:

$$egin{aligned} &\langle N_{2,3}
angle = 0, &\langle N_1
angle^2 = rac{-m_N M_{Pl}}{\lambda_1} \ &A = -2m_N, &B = (1-\lambda_2/\lambda_1)m_N, &C = f\langle N_1
angle \end{aligned}$$

).

The soft term $-h\langle N_1\rangle(\nu_1\phi^0 - l_1\phi^+)$ must also be added to allow (ν_1, l_1) and (ϕ^+, ϕ^0) to remain massless at the seesaw scale. The resulting theory is then protected below the seesaw scale by the usual R-parity of a supersymmetric theory.

Thus A_4 allows tribimaximal neutrino mixing to be generated automatically from the $N_{1,2,3}$ superfields themselves. However, the neutrino mass eigenvalues are not predicted. Approximate Tribimaximal Mixing

Consider next the assignments of case (II), where $(\nu_i, l_i), l_i^c \sim \underline{3}$ and $(\phi_i^0, \phi_i^-) \sim \underline{1}, \underline{1}', \underline{1}''$,

then \mathcal{M}_l is diagonal with

$$\begin{pmatrix} m_e \\ m_\mu \\ m_\tau \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \begin{pmatrix} h_1 v_1 \\ h_2 v_2 \\ h_3 v_3 \end{pmatrix}$$

Here $\mathcal{M}_{\nu}^{(e,\mu,\tau)} = \mathcal{M}_{\nu}$ already.

Let
$$d = e = f$$
, then

$$\mathcal{M}_{\nu} = \begin{pmatrix} a+b+c & d & d \\ d & a+\omega b+\omega^2 c & d \\ d & d & a+\omega^2 b+\omega c \end{pmatrix}$$
Assume $b = c$ and rotate to the basis
 $[\nu_e, (\nu_{\mu} + \nu_{\tau})/\sqrt{2}, (-\nu_{\mu} + \nu_{\tau})/\sqrt{2}]$, then
 $\mathcal{M}_{\nu} = \begin{pmatrix} a+2b & \sqrt{2}d & 0 \\ \sqrt{2}d & a-b+d & 0 \\ 0 & 0 & a-b-d \end{pmatrix}$,

i.e. maximal $u_{\mu} - \nu_{\tau}$ mixing and $U_{e3} = 0$.

We now have $\tan 2\theta_{12} = 2\sqrt{2}d/(d-3b)$ For $b \ll d$, $\tan 2\theta_{12} \rightarrow 2\sqrt{2}$, i.e. $\tan^2 \theta_{12} = 1/2$, but $\Delta m_{sol}^2 \ll \Delta m_{atm}^2$ implies $2a + b + d \rightarrow 0$, so that $\Delta m_{atm}^2 \rightarrow 6bd \rightarrow 0$ as well.

Therefore, $b \neq 0$ is required, and $\tan^2 \theta_{12} \neq 1/2$, but should be close to it, because b = 0 enhances the symmetry of \mathcal{M}_{ν} from Z_2 to S_3 . Here $\tan^2 \theta_{12} < 1/2$ implies inverted ordering and $\tan^2 \theta_{12} > 1/2$ implies normal ordering. Models based on (II):

- Chen/Frigerio/Ma(2005): $3b = -ef/d - \omega^2 f d/e - \omega de/f,$ $3c = -ef/d - \omega f d/e - \omega^2 de/f.$
- Ma(2005-2): two complicated equalities.
- Hirsch/Villanova/Valle/Ma(2005): d = e = f, [b = c].
- Ma(2005-3): b = c, e = f, $(a + 2b)d^2 = (a b)e^2$.

Particle content of models based on (II):

$A_4(II)$	(ϕ^+,ϕ^0)	N	(ξ^{++},ξ^+,ξ^0)	χ^0
CFM05	1, 1', 1''	3	1	3
M05-2	1	3	3	$1,1^{\prime},1^{\prime\prime},3$
HVVM05	$1,1^{\prime},1^{\prime\prime}$		$1,1^{\prime},1^{\prime\prime},3$	
M05-3	1, 1', 1'', 3	1, 1', 1''		

S_4 and B_4

Approximate tribimaximal mixing is obtained naturally in a supersymmetric seesaw model [Ma(2005-4)] with S_4 , resulting in b = c and e = f [case (II)]:

$$\mathcal{M}_{\nu} = \begin{pmatrix} a+2b & e & e \\ e & a-b & d \\ e & d & a-b \end{pmatrix}$$

Here b = 0 and e = d are related limits.

Permutation Symmetry S_4

The group of permutation of 4 objects is S_4 . It contains both S_3 and A_4 . It is also the symmetry group of the hexahedron (cube) and the octahedron.

class	n	h	χ_1	$\chi_{1'}$	χ_2	χ_3	$\chi_{3'}$
C_1	1	1	1	1	2	3	3
C_2	3	2	1	1	2	-1	-1
C_3	8	3	1	1	-1	0	0
C_4	6	4	1	-1	0	-1	1
C_5	6	2	1	-1	0	1	-1

Multiplication rule:

 $\begin{aligned} \underline{3} \times \underline{3} &= \underline{1}(11 + 22 + 33) + \underline{2}(11 + \omega^2 22 + \omega 33, 11 + \omega 22 + \omega^2 33) \\ &+ \underline{3}(23 + 32, 31 + 13, 12 + 21) + \underline{3}'(23 - 32, 31 - 13, 12 - 21) \\ &\underline{3}' \times \underline{3}' = \underline{1} + \underline{2} + \underline{3}_S + \underline{3}'_A \\ &\underline{3} \times \underline{3}' = \underline{1}' + \underline{2} + \underline{3}'_S + \underline{3}_A \end{aligned}$

Note that both $\underline{3} \times \underline{3} \times \underline{3} = \underline{1}$ and $\underline{2} \times \underline{2} \times \underline{2} = \underline{1}$ are possible in S_4 .

Let
$$(\nu_i, l_i), l_i^c, N_i \sim \underline{3}$$
.

Assume singlet Higgs superfields $\sigma_{1,2,3} \sim \underline{3}$ and $\zeta_{1,2} \sim \underline{2}$, then

$$\mathcal{M}_{N} = \begin{pmatrix} M_{1} & h\langle\sigma_{3}\rangle & h\langle\sigma_{2}\rangle \\ h\langle\sigma_{3}\rangle & M_{2} & h\langle\sigma_{1}\rangle \\ h\langle\sigma_{2}\rangle & h\langle\sigma_{1}\rangle & M_{3} \end{pmatrix}$$

where

 $M_{1} = A + f(\langle \zeta_{2} \rangle + \langle \zeta_{1} \rangle)$ $M_{2} = A + f(\omega \langle \zeta_{2} \rangle + \omega^{2} \langle \zeta_{1} \rangle)$ $M_{3} = A + f(\omega^{2} \langle \zeta_{2} \rangle + \omega \langle \zeta_{1} \rangle)$

The most general S_4- invariant superpotential of σ and ζ

is given by

$$W = M(\sigma_1\sigma_1 + \sigma_2\sigma_2 + \sigma_3\sigma_3) + \lambda\sigma_1\sigma_2\sigma_3 + m\zeta_1\zeta_2 + \rho(\zeta_1\zeta_1\zeta_1 + \zeta_2\zeta_2\zeta_2) + \kappa(\sigma_1\sigma_1 + \omega\sigma_2\sigma_2 + \omega^2\sigma_3\sigma_3)\zeta_2 + \kappa(\sigma_1\sigma_1 + \omega^2\sigma_2\sigma_2 + \omega\sigma_3\sigma_3)\zeta_1$$

The resulting scalar potential has a minimum at V = 0(thus preserving supersymmetry) only if $\langle \zeta_1 \rangle = \langle \zeta_2 \rangle$ and $\langle \sigma_2 \rangle = \langle \sigma_3 \rangle$, so that

$$\mathcal{M}_N = \begin{pmatrix} A+2B & E & E \\ E & A-B & D \\ E & D & A-B \end{pmatrix}$$

 \mathcal{M}_l is diagonal by choosing $\phi_{1,2,3}^l \sim \underline{1} + \underline{2}$. $\mathcal{M}_{\nu N}$ is proportional to the identity by choosing $\phi_{1,2,3}^N \sim \underline{1} + \underline{2}$, with the latter having zero vacuum expectation value. Thus

$$\mathcal{M}_{\nu} = \begin{pmatrix} a+2b & e & e \\ e & a-b & d \\ e & d & a-b \end{pmatrix}$$

This avoids the *ad hoc* assumption of equating the contributions of the $\underline{1}'$ and $\underline{1}''$ contributions in A_4 models.

Exact tribimaximal mixing has also been obtained [Grimus/Lavoura(2005)] using the Coxeter group B_4 , which is the symmetry group of the hyperoctahedron (4-crosspolytope) with 384 elements. Here \mathcal{M}_l is diagonal with (ν_i, l_i) , l_i^c , and (ϕ_i^+, ϕ_i^0) belonging to 3 different 3-dimensional representations of B_4 , i.e.

$$a_1b_1c_1 + a_2b_2c_2 + a_3b_3c_3 = \underline{1}$$

The \mathcal{M}_N of S_4 [M05-4] is then reduced by D = E + 3B.

Some Remarks

With the application of the non-Abelian discrete symmetry A_4 , a plausible theoretical understanding of the HPS form of the neutrino mixing matrix has been achieved.

Another possibility is that $\tan^2 \theta_{12}$ is not 1/2 but close to it. This has theoretical support in an alternative version of A_4 , but is much more natural in S_4 .