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QCD: Symmetries, Excitations, Phases

High density: Color superconductivity, Neutron stars

Quark stars: Bulk and surface features, observations

Quark stars: link to r-process nucleosynthesis?
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Discovery of QCD

David Gross David Politzer Frank Wilczek

2004 Nobel Prize winners in Physics

————————————————————–

Asymptotic freedom allows for perturbative calculations at large
momentum scales; applied to high-temperature and high-density

smallness of coupling constant enables controlled calculations;
non-trivial physics can still emerge (many-body effects eg. BCS)
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The QCD phase diagram

What happens to quarks and gluons at high baryon density? Are symmetries
restored/broken?

The answer is important for understanding the interior of neutron stars.
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BCS pairing in QCD

Fermi sphere

k
F ∆

Gap

1-gluon exchange
between quarks.

Cooper pairing results
in formation of a gap.

Quark pairing energy
( MeV)
is much larger than in
nuclei ( MeV)

Quarks at the Fermi surface gain pairing energy
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Excitations
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Low-energy excitations ( ) match low-lying multiplets of QCD at zero density

, , and

:

decays determine neutrino emission rates (important for stellar cooling)
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Neutron star cooling (hadronic matter only)

—– with superfluidity
—– without
—-/- - - (Fe/H envelope)

Prakash & Lattimer,
Science V 304 (2004).

Cooling equation: �� �� �� � � ��� �
	 �
��
 �� 
 �

� � ��

Neutrino emission and scattering rates depend on the dense phase
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Implications for neutron/quark stars

Quark matter may be realized in:

Hybrid stars: Neutron stars with quark cores

Bare quark stars: No nuclear mantle/shell at surface

—————————————————————————————————————

Hybrid stars
2-flavor pairing
3-flavor pairing

—————————————————————————————————————
2-flavors: pair, is heavy ; no global symmetries broken no Goldstone
bosons (except superfluid mode);
charge neutrality requires:

electrons control the specific heat and thermal conductivity

Quark/gluon contribution is suppressed for
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Cooling curves
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Quark matter (generalities)

Witten hypothesis (1984):
At large baryon number,� � �

of 3-flavor quark mat-
ter is larger than for nuclear
matter.
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Equation of state
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Surface of bare quark stars (conventional)

Quarks (1 Fermi)
+ 3

Electrons (10  Fermis)
CFL

2SC

+ other
phases

Bare Quark Star: 3-flavor core with 2+1 flavor surface layer

Implications

Electrons are present at the surface.
For Temperatures of interest ( ), they form a degenerate Fermi gas.

Surface electrons provide large neutrino and photon emissivity at these
temperatures (bremsstrahlung process)
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Super-critical electric fields
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�� � � Pair Emission at the Star’s Surface


 � 
 � Pair winds flow from several astrophysical objects.

..from Neutron stars/pulsar magnetospheres ( � � � 
 � 
 � �
)

NEW! ..from pair-creation at the surface of a bare quark star

(Jaikumar et al, Phys.Rev. D70 (2004))
——————————————————————–

Surface Photon Emission

processes do not affect the luminosity.

. – p.17/24
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Surface Photon Luminosity

Average photon energy is 0.5 MeV or more
due to 
 � 
 � annihilation.
( � keVs for Neutron Stars)

Photon luminosities exceed Eddington limit.

Prospects with INTEGRAL satellite
(2002)

(J. Knodlseder, CESR)
———————————————————————————————-

Caveats

Quark star surface may support a crust

. – p.18/24
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Heterogenous Quark Matter?
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s

e −

P

µ

Pq

Pe

(Jaikumar, Reddy and Steiner,
nucl-th/0507055)
Low density ( �� � � � ): local neutrality
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Strange stars and Astrophysics

Strange stars are linked with several unexplained phenomena:

Soft-gamma repeaters (SGRs): Flash-heating followed by photon emission
from strange star surface
(V. V. Usov, PRL 87 (2001) 021101)

Gamma-ray bursters (GRBs): Fireball energy obtained from phase
transitions in quark matter
(R. Ouyed and F. Sannino, AA 387 (2002) 725)

X-ray variability in LMXBs:
kHz quasi-periodic oscillations explained by rapidly rotating strange stars
(J. Zdunik and E. Gourgoulhon, PRD63 (2001) 087501)

Quark stars might even be candidates for nucleosynthesis - The Quark Nova
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observations of n-capture elements in stars
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Candidate sources:

1. Type II Supernovae

2. Neutron star mergers

The s-process (blue) and
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after deconvolution
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The s-process yields are

well-understood from theory

of AGB stars

———————
r-process yields are derived

(Total=r+s)
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Alt: decompression of neutron matter

Advantages:
1. large neutron density means ( ) equilibrium is easily attained.

2. small electron fraction in neutron matter implies enough

neutrons to produce heaviest elements (actinides).

0.03

0.04

dynamical expansion is modelled

During decompression, density falls, rises initially (due to decays)

r-process conditions reached at g/cc, MeV.

. – p.22/24
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Element abundance ( �	 � ��� � �� ��� � � � � � �

ms,

� �� � � �)

� -decays (

� 
�

Pb and beyond) not included yet.


 -process peaks are sharper than solar.
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Summary

Quark Matter at high density displays interesting phases
Cooper pairing leads to modified physical properties

Neutrino rates are modified if quark matter is present in any of its phases;
Stellar cooling could be different from an ordinary neutron star

A Bare Quark Star has a distinctive surface; it cools also by emitting
photons – spectral identification by INTEGRAL satellite possible

Quarks in neutron stars can be tied to astrophysical phenomena —

r-process, GRBs, SGRs...
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