WHEPP9, IOP Bhubaneswar

Physics Prospects at a Linear e^+e^- **Collider**

Saurabh D. Rindani

Physical Research Laboratory Ahmedabad

WHEPP9, January 3, 2006 – p. 1/45

- The need for an e^+e^- collider
- Features of an e^+e^- collider
- Standard model physics
 - Top quark production
 - Gauge boson production
 - Higgs boson production
- Beyond standard model
 - Extended Higgs sector
 - Supersymmetry
 - Extra dimensions
 - Extra gauge bosons

- An inherent advantage of an e^+e^- collider is smaller hadronic background
- Hence, higher accuracy for a lower energy possible
- Remember the success of LEP!
- Energy is tunable
- Can be complementary to hadronic collider
- Possibility of $\gamma\gamma$, γe and e^-e^- as additional modes
- Can improve on the accuracy of LEP in the GigaZ option

- Linear rather than circular to reduce losses
- Centre-of-mass energy from 300 to 1000 GeV
- Most estimates at $\sqrt{s} = 500$ GeV and 800 GeV
- Luminosity of few times 10^{34} cm⁻² s⁻¹
- Integrated luminosity assumed 500 fb $^{-1}$ for $\sqrt{s} = 500~{\rm GeV}$
- Possibly higher luminosity for the higher energy version
- May be operated at $\sqrt{s} = m_Z$ (GigaZ option)
- Longitudinal beam polarization possible
- Decision taken on cold technology

- Polarized beams
 - Longitudinally polarized e^- as well as e^+ beams expected to be available
 - Anticipated e^- polarization 80-90%
 - Anticipated e^+ polarization 60%
 - Feasibility of conversion of longitudinal polarization to transverse polarization
- Photon beams
 - Compton backscattering of high intensity laser beams off high energy electron beams can give photon beams carry a large fraction of electron energy ..
 - Polarized laser and electron beams can give high degree of photon polarization, WHEPP9, January 3, 2006 - p. 5/45

- Longitudinal polarization will be available at linear collider
- e^- polarization: 80–90%, e^+ polarization: 60%

 $P_{
m eff} = (P_{e^-} - P_{e^+})/(1 - P_{e^-}P_{e^+})$

- Longitudinal polarization will be available at linear collider
- e^- polarization: 80–90%, e^+ polarization: 60%

 $P_{
m eff} = (P_{e^-} - P_{e^+})/(1 - P_{e^-}P_{e^+})$

- Longitudinal polarization will be available at linear collider
- e^- polarization: 80–90%, e^+ polarization: 60% $P_{\text{eff}} = (P_{e^-} - P_{e^+})/(1 - P_{e^-}P_{e^+})$
- Longitudinal polarization can enhance certain features of new physics
- Longitudinal polarization can help to supress unwanted background
- Longitudinal polarization could be efficiently converted to transverse polarization using spin rotators
- Transverse polarization provides an additional direction and hence allows azimuthal dependence WHEPP9, January 3, 2006 - p. 6/45

Options at ILC

- $e^-\gamma$, e^-e^- options available
- Advantageous to run at the $\sqrt{s} = m_Z$ with high luminosity, improving on the precision of LEP (GigaZ option) ..

Photon spectrum

.

WHEPP9, January 3, 2006 - p. 8/45

Photon polarization

.

WHEPP9, January 3, 2006 - p. 9/45

- Primary goal of studying gauge interactions is to establish the non-Abelian nature of electroweak interactions
- Processes sensitive to triple gauge couplings are $e^+e^- \to W^+W^-$ and $e^+e^- \to W^\pm e^\mp \nu$
- At high luminosity and with the help of beam polarization, triple gauge couplings can be determined with an error of a few $\times 10^{-4}$

Gauge bosons interactions

	coupling	error $\times 10^{-4}$					
		$\sqrt{s}=500~{ m GeV}$	$\sqrt{s}=800~{ m GeV}$				
	Δg_1^Z	15.5	12.6				
••	$\Delta\kappa_\gamma$	3.3	1.9				
	$oldsymbol{\lambda}_{\gamma}$	5.9	3.3 1.9				
	$\Delta\kappa_Z$	3.2					
	λ_Z	6.7	3.0				
	g_5^Z	16.5	14.4				
	g_4^Z	45.9	18.3				
	$ ilde{\kappa}_Z$	39.0	14.3				
	$ ilde{oldsymbol{\lambda}}_Z$	7.5	3.0				

(W. Menges 2001)

- Neutral gauge boson anomalous couplings can be determined to the same precision in $e^+e^-\gamma Z, ZZ$
- Asymmetries with longitudinal or transverse polarization can be used for CP-odd couplings (D. Choudhury and S. Rindani 1994, B. Ananthanarayan et al 2004,2005)

- Top-quark mass measurement
 - Top mass can be measured precisely from a scan of the $t\bar{t}$ threshold ($\sqrt{s} \approx 340 380$ GeV)
 - Theoretical analysis needs double-expansion of $\sigma_{t\bar{t}}$ in α_s and β of top quark
 - Terms upto NNLO calculated (A. Hoang, 2004)
 - Simultaneous precision measurement of m_t and α_s will be possible

- Top-quark mass measurement
 - Top mass can be measured precisely from a scan of the $t\bar{t}$ threshold ($\sqrt{s} \approx 340 380$ GeV)
 - Theoretical analysis needs double-expansion of $\sigma_{t\bar{t}}$ in α_s and β of top quark
 - Terms upto NNLO calculated (A. Hoang, 2004)
 - Simultaneous precision measurement of m_t and α_s will be possible

- Top-quark mass measurement
 - Top mass can be measured precisely from a scan of the $t\bar{t}$ threshold ($\sqrt{s} \approx 340 380$ GeV)
 - Theoretical analysis needs double-expansion of $\sigma_{t\bar{t}}$ in α_s and β of top quark
 - Terms upto NNLO calculated (A. Hoang, 2004)
 - Simultaneous precision measurement of m_t and α_s will be possible
- With a 10-point scan, expected precision $\Delta m_t = 42$ MeV, $\Delta lpha_s(M_Z) = 0.001, \, \Delta \Gamma_t = 50$ MeV
- Including theoretical uncertainties

 $\Delta m_t(\overline{MS}) = 100 \text{ MeV}$ (M. Martinez, R. Miquel, 2003)

- Anomalous top couplings to γ like anomalous magnetic dipole moments, electric dipole moments would give evidence for beyond SM effects
- Analogous dipole couplings to Z possible
- By suitable choice of angular or energy asymmetries, senstivity of $10^{-3} \times e/m_t$ possible for anomalous dipole couplings
- Possible to study anomalous γ couplings also at $\gamma\gamma$ collider

- Search for Higgs high priority at LHC and at ILC
- Measuring its properties necessary for understanding the origin of mass
- To test completeness of minimal SM and Higgs mechanism as source of mass, measurements must show:
 - Couplings of Higgs bosons to fermions and gauge bosons proportional to mass (needs measurement of branching ratios)
 - The Higgs boson must be $J^{CP} = 0^{++}$
 - The Higgs boson must be the source of its own mass (needs the measurement of trilinear and quartic self-couplings)

Higgs boson can be produced at a linear collider through

- "Higgsstrahlung": $e^+e^- \rightarrow ZH$
- *WW* fusion: $e^+e^- \rightarrow \nu_e \bar{\nu}_e H$
- *ZZ* fusion: $e^+e^- \rightarrow e^+e^-Z$

Production of Higgs boson

Production of Higgs boson

- At $\sqrt{s} = 500$ GeV,
 - Higgsstrahlung dominates for $m_H \lesssim 160$ GeV,
 - WW fusion dominates for $m_H \gtrsim 160 \; {
 m GeV}$
- For $\sqrt{s} = 800$ GeV, the dominant mechanism is WW fusion
- ZZ fusion contributes 10% at $\sqrt{s} = 800$ GeV

- To distinguish SM Higgs from a Higgs of an extended model it is necessary to measure Higgs couplings with precision
- For this it is necessary to measure various decay branching ratios

Measuring Higgs Couplings

- For $m_H < 150$ GeV, $H
 ightarrow bar{b}$ dominates
- Coupling to bottom quark can be determined to precision of about 2%
- Couplings to charm quark and τ to a precision of about 12% (J. Kuhl, 2003)
- Coupling to muon expected to be poorly meaured, to about 30%

- Top quark much heavier than other quarks can play special role
- For $m_H < 2m_t$, coupling to top can be measured through

 $e^+e^-
ightarrow t ar{t} H$

- This suffers from small rate and requires higher energy and luminosity
- For √s ≥ 800 GeV, L ≈ 1000 fb⁻¹, it can be measured to 10% accuracy
 (A. Juste, G. Merino, 1999; A. Gay, 2003)

- Higgs self-couplings in SM arise from: $V= {\textstyle\frac{1}{2}} m_H^2 H^2 + \lambda_3 v H^3 + {\textstyle\frac{1}{4}} \lambda_4 H^4$
- One needs to check the relation:

$$\lambda_3=\lambda_4=m_H^2/(2v)$$

- Measuring $\lambda_{3/4}$ requires the production of 2/3 Higgs bosons (double/triple Higgsstrahlung)
- For $\sqrt{s} = 500$ GeV, and an integrated luminosity of 1000 fb⁻¹, λ_3 can be determined to 20% accuracy through $e^+e^- \rightarrow ZHH$, $H \rightarrow b\bar{b}$, for 120 GeV < m_H < 140 GeV (Baur et al 2003, Castanier et al 2001, Bataglia et al 2001)
- λ_4 not easy to determine because of the small rate for $e^+e^- \rightarrow ZHHH$ (Djouadi et al 1999)

- For SM Higgs it is necessary to verify spin 0 and CP even nature
- Angular distribution of Z in $e^+e^- \rightarrow ZH$ for $J^P = 0^+$ Higgs is $d\sigma/d\cos\theta \sim \sin^2\theta$
- Spin can be determined from \sqrt{s} dependence of σ

- For SM Higgs it is necessary to verify spin 0 and CP even nature
- Angular distribution of Z in $e^+e^- \rightarrow ZH$ for $J^P = 0^+$ Higgs is $d\sigma/d\cos\theta \sim \sin^2\theta$
- Spin can be determined from \sqrt{s} dependence of σ

- For SM Higgs it is necessary to verify spin 0 and CP even nature
- Angular distribution of Z in $e^+e^- \rightarrow ZH$ for $J^P = 0^+$ Higgs is $d\sigma/d\cos\theta \sim \sin^2\theta$
- Spin can be determined from \sqrt{s} dependence of σ
- Spin can be determined from invariant mass of virtual Z in the decay $H \rightarrow Z^* Z$ for $m_H < 2m_Z$
- Angular distribution of decay products in $H \rightarrow Z^*Z$ can distinguish P = + from P = -
- These measurements are near HZ threshold, and require low luminosity ($\sim 20 {
 m fb}^{-1}$)
- Observation of $H \rightarrow \gamma \gamma$ rules out J = 1

- CP property of the Higgs can be tested in the $\gamma\gamma$ option (J. Gunion et al)
- For linearly polarized photons, even parity Higgs can be produced when the photons have parallel spins
- Odd parity Higgs can be produced when the photons have perpendicular spins

- The simplest extension of the Higgs sector is a two Higgs doublet model
- MSSM is a special case, with constrained couplings
- With two Higgs doublets, the spectrum consists of 5 scalars:

H, h, A (neutral), H^{\pm} (charged)

- When there is no CP violation, H, h have CP=+, A has CP= -
- If there is CP violation, there is mixing among H, h and A to give mass eigenstates H₁, H₂, H₃ which have no definite CP

 In MSSM at tree level, only two independent parameters because of relations:

 $egin{aligned} m_h &\leq m_Z, m_A \leq m_H \ m_{H^\pm}^2 &= m_A^2 + m_W^2 \ m_h^2 + m_H^2 &= m_A^2 + m_Z^2 \end{aligned}$

• Radiative corrections change these relations the bound on the lightest Higgs boson is $m_h \lesssim 152~{
m GeV}$

 CP-even Higgs H, h easily observable through Higgsstrahlung

 $e^+e^-
ightarrow Z+H,h$

or WW, ZZ fusion

$$e^+e^-
ightarrow
uar{
u} + H,h \ e^+e^-
ightarrow e^+e^- + H,h$$

- Can also be produced by associated production $e^+e^-
 ightarrow A + H, h$
- Charged Higgs H^{\pm} can be pair produced $e^+e^- \rightarrow H^+H^-$

Higgs production in MSSM

- Lightest neutral Higgs branching ratios differ from those in SM
- Precision measurements can give indirect evidence for SUSY
- $R \equiv \Gamma(h \rightarrow b\bar{b})/\Gamma(h \rightarrow \tau\bar{\tau})$ sensitive to parameters of MSSM

MSSM Higgs

The inner band gives the 5% experimental uncertainty (J. Guasch et al 2003)

MSSM Higgs

The inner band gives the 5% experimental uncertainty (J. Guasch et al 2003)

• For large aneta, it is sensitive to $m_A \leq 600$ GeV for $\sqrt{s} = 350$ GeV and L = 1000 fb $^{-1}$

WHEPP9, January 3, 2006 - p. 23/45

- Most theoretically motivated extension of SM
- Symmetry of space-time that relates fermions and bosons
- Associates with every known particle a new particle differing in spin by 1/2
- Collectively known as "sparticles"
- Supersymmetry relates the couplings of the new particles to those of known particles
- Leads to predictions for production and decay rates of sparticles in terms of their masses
- Supersymmetry breaking leads to mass splitting while preserving coupling constant relations

- Observing new particles associated with supersymmetry a major goal of both LHC and ILC
- At hadron collider, all kinematically allowed sparticles produced together
- Difficult to untangle the pattern of sparticle masses and couplings
- Lepton collider which can change c.m. energy can explore spectrum of sparticles systematically
- Scalar sparticles associated with leptons particularly difficult to observe at hadron colliders

Goals for study of supersymmetry

- Discover all the predicted sparticles
- Meaure the sparticle quantum numbers
- Measure the sparticle masses
- Measure the sparticle couplings to establish supersymmetry
- Unravel the supersymmetry breaking scheme

- New scalar partner for each chiral fermion
- Each massive fermion has two scalar partners (L and R)
- In broken supersymmetry, these can have different masses
- Each gauge boson has a spin-1/2 partner ("gaugino")
- In SU(3) imes SU(2) imes U(1) these have masses M_3, M_2, M_1
- Higgs bosons have spin-1/2 partners called Higgsinos
- Charged gauginos and higgsinos mix to give charginos $ilde{\chi}^\pm_i,\,i=1,2$

WHEPP9, January 3, 2006 - p. 27/45

- Most popular class of supersymmetric models has *R*-parity
- Supersymmetric particles always produced in pairs
- The lightest supersymmetric particle (LSP) is stable
- LSP usually assumed to be the lightest neutralino
- LSP also a viable candidate to explain dark matter in the universe

• Scalar particles of leptons (sleptons \tilde{l}^{\pm}) produced through *s*-channel γ and *Z* exchange

 $e^+e^-
ightarrow \gamma, Z
ightarrow ilde{l}^+ ilde{l}^-$

- Selectron pair production has additional *t*-channel contribution from neutralino exchange
- Sleptons decay to a neutralino or chargino: $\tilde{l}^{\pm} \rightarrow \tilde{\chi}^0 l^{\pm}, \ \tilde{\chi}^{\pm} \nu_l$
- If the slepton decays to LSP $(\tilde{\chi}_1^0)$, the chain is $e^+e^- \rightarrow \tilde{l}^+\tilde{l}^- \rightarrow l^+l^-\tilde{\chi}_1^0\tilde{\chi}_1^0$

Momentum of leptons is precisely measured; neutralinos give missing transverse momentum

$$m_{ ilde{l}}^2 = rac{s E_{\min} E_{\max}}{(E_{\min} + E_{\max})^2} \;\; 1 - rac{m_{ ilde{\chi}_0}^2}{m_{ ilde{l}}^2} = rac{2(E_{\min} + E_{\max})}{\sqrt{s}}$$

$$m_{ ilde{l}}^2 = rac{s E_{\min} E_{\max}}{(E_{\min} + E_{\max})^2} \;\; 1 - rac{m_{ ilde{\chi}_0}^2}{m_{ ilde{l}}^2} = rac{2(E_{\min} + E_{\max})}{\sqrt{s}}$$

• The end points E_{\min} , E_{\max} afford a measurement of slepton masses

$$m_{ ilde{l}}^2 = rac{s E_{\min} E_{\max}}{(E_{\min} + E_{\max})^2} ~~ 1 - rac{m_{ ilde{\chi}_0}^2}{m_{ ilde{l}}^2} = rac{2(E_{\min} + E_{\max})}{\sqrt{s}}$$

• The end points E_{\min} , E_{\max} afford a measurement of slepton masses

WHEPP9, January 3, 2006 - p. 30/45

$$m_{ ilde{l}}^2 = rac{s E_{\min} E_{\max}}{(E_{\min} + E_{\max})^2} ~~ 1 - rac{m_{ ilde{\chi}_0}^2}{m_{ ilde{l}}^2} = rac{2(E_{\min} + E_{\max})}{\sqrt{s}}$$

- The end points E_{\min} , E_{\max} afford a measurement of slepton masses
- Situation more complicated in case of $\tilde{\tau}$ sleptons due to escaping neutrinos from τ decay
- If neutralino mass is known from smuon decay, the shape can be used to determine stau mass

$$m_{ ilde{l}}^2 = rac{s E_{\min} E_{\max}}{(E_{\min} + E_{\max})^2} ~~ 1 - rac{m_{ ilde{\chi}_0}^2}{m_{ ilde{l}}^2} = rac{2(E_{\min} + E_{\max})}{\sqrt{s}}$$

- The end points E_{\min} , E_{\max} afford a measurement of slepton masses
- Dominant background from $e^+e^- \rightarrow W^+W^- \rightarrow l^+l'^-\nu_l\bar{\nu}_{l'}$
- Strongly peaked in forward direction can be reduced by angular cut
- Background can also be reduced by polarized beams $(e_R^- e_L^+)$

- Slepton masses can also be measured precisely from threshold energy scans
- This is independent of the decay patterns
- Because sleptons are scalars, threshold energy dependence scales like β³ as compared to β dependence for fermion pairs
- The absolute cross section for slepton pair production measures the slepton couplings to 1%-2%

• Charginos and neutralinos are pair produced:

$$e^+e^-
ightarrow ilde{\chi}_i^\pm ilde{\chi}_i^\mp ~~i=1,2 \ e^+e^-
ightarrow ilde{\chi}_i^0 ilde{\chi}_i^0 ~~i=1,4$$

- Chargino production occurs through s-channel Z exchange and t-channel sneutrino exchange
- The lightest chargino decays according to $\tilde{\chi}_1^{\pm} \rightarrow l^{\pm} \nu_l \tilde{\chi}_1^0$ either via intermediate W^{\pm} or via slepton.
- Dominant background is WW and ZZ production, which can be minimized using polarization
- Chargino mass can be measured through the kinematic endpoints of the decay products and through threshold scan

- The second lightest neutralino decays according to $\tilde{\chi}_2^0 \rightarrow l^+ l^- \tilde{\chi}_1^0$ either via Z or via a slepton
- In energy spectrum of the di-lepton system can be used to determine the masses of the primary and secondary neutralino, as in the case of slepton
- $\tilde{\chi}_2^0$'s are also produced in decay chains
- Can get precise mass difference $\Delta m(\tilde{\chi}_2^0 \tilde{\chi}_1^0)$ from the upper edge of the di-lepton mass spectrum
- Charginos with the decay $\tilde{\chi}_1^\pm \to q \bar{q}' \tilde{\chi}_1^0$ give $\Delta m(\tilde{\chi}_1^\pm \chi_1^0)$

Precision of mass measurements

Sparticle masses and their expected precision (SPS1a mSUGRA scenario)

	m	LHC	ILC	LHC+ILC		m	LHC	ILC	LHC+ILC
h	111.6	0.25	0.05	0.05	H	399.6		1.5	1.5
\boldsymbol{A}	399.1		1.5	1.5	H+	407.1		1.5	1.5
χ_1^0	97.03	4.8	0.05	0.05	χ^0_2	182.9	4.7	1.2	0.08
χ^0_3	349.2		4.0	4.0	χ_4^0	370.3	5.1	4.0	2.3
χ_1^\pm	182.3		0.55	0.55	χ^{\pm}_{2}	370.6		3.0	3.0
$ ilde{e}_1$	144.9	4.8	.05	0.05	$ ilde{e}_2$	204.2	5.0	0.2	0.2
$ ilde{\mu}_1$	144.9	4.8	0.2	0.2	$ ilde{\mu}_2$	204.2	5.0	0.5	0.5
$ ilde{ au}_1$	135.5	6.5	0.3	0.3	$ ilde{ au}_2$	207.9		1.1	1.1
$ ilde{ u}_e$	188.2		1.2	1.2					

(G.Weiglein et al 2004)

- There can be complex phases in various mass matrices in MSSM
- Can lead to observable effects like dipole moments, which constrain the parameters
- Can be studied in asymmetries in slepton, chargino and neutralino sector
- CP violation can feed into the Higgs sector at higher orders
- A CP-violation Higgs sector can be studied through $\gamma\gamma$ option

- An effective Planck scale at TeV energy can exist if there are extra spatial dimensions.
- Three classes of extra-dimension models, differing from each other in the geometry of various fields
- They have different experimental signatures
- All models have closely-spaced excitations extending into the TeV mass range and particles with spin-2
- Well-suited for study in e^+e^- collisions at the highest possible energies.
- Also e^-e^- , $e^-\gamma$, and $\gamma\gamma$ options and possibility of transverse polarization can be used to differentiate extra-dimension models.

- The original extra dimensions model (ADD model) (Arkani-Hamed, Dimopoulos, and Dvali 1998):
- SM fields confined to a 1+3 dimensional brane
- Gravity propagates in the "bulk" of other dimensions
- Gravity strong in the bulk, but only a fraction is felt on the brane.

$$M^2_{planck} \sim M^{d+2}_{brane} R^d$$

- *M*_{brane}: effective Planck mass scale on the 3-brane where SM lives
- Effective Planck mass can be tuned to TeV scale
- For d=2, R is on the order of a millimeter.

- There is a tower of excited Kaluza-Klein (KK) graviton states which couple weakly to SM particles
- In e⁺e⁻ collisions the experimental signature is missing energy in Standard Model processes by radiation of a KK graviton from SM particles (Eboli et al 2001)
- Change in rate and angular distribution of pair production by virtue of a graviton propagator (G.F. Giudice et al 1999, T. Han et al 1999, K. Agashe and N.G. Deshpande 1999, K. Cheung and G. Landsberg 2002)

- One signature is missing energy in
 e⁺e⁻ → γ + missing energy
 (E.A. Miraboli et al 1999, S. Gopalakrishna et al
 2001)
- Another is radiated graviton in Bhabha scattering.
 (S. Dutta et al 2003)

- One signature is missing energy in
 e⁺e⁻ → γ + missing energy
 (E.A. Miraboli et al 1999, S. Gopalakrishna et al
 2001)
- Another is radiated graviton in Bhabha scattering.
 (S. Dutta et al 2003)

 $\mathbf{O}(e^+e^- \rightarrow e^+e^- G_n)$ (pb) WHEPP9. January 3. 2006 - p. 39/45

- One signature is missing energy in
 e⁺e⁻ → γ + missing energy
 (E.A. Miraboli et al 1999, S. Gopalakrishna et al
 2001)
- Another is radiated graviton in Bhabha scattering.
 (S. Dutta et al 2003)
- Clean measurement of the angular distribution of final states in γ+ missing energy would distinguish the ADD model from a scenario where the missing energy is from extra neutrinos or superpartners.

- The Randall-Sundrum (RS) model allows for a brane having a TeV scale without large compactification radius of the extra dimensions (L. Randall and R. Sundrum 1999)
- There is one extra dimension and two branes, one with an effective Planck mass at TeV scale and the other at the Planck scale
- A scalar field in the bulk keeps the branes the proper distance apart.
- This results in a warp factor e^{-πκR} for the spacetime metric κ: curvature of fifth dimension R: compatification scale
- A TeV scale on low energy brane achieved if $\kappa R \sim 12$

- Graviton masses are of electroweak scale, and there is a series of KK gravitons
- The masses of the KK excitations of the gravitons are $M_n = \zeta_n m_0$, where $m_0 = \kappa e^{-\pi \kappa R}$ and ζ_n are zeroes of the Bessel function (H. Davoudiasl 2001)

- Graviton masses are of electroweak scale, and there is a series of KK gravitons
- The masses of the KK excitations of the gravitons are $M_n = \zeta_n m_0$, where $m_0 = \kappa e^{-\pi \kappa R}$ and ζ_n are zeroes of the Bessel function (H. Davoudiasl 2001)
- Other schemes lead to different mass spacings. More useful to consider model parameters as m_0 and $c = \kappa / \overline{M}_{planck}$ (effective coupling)
- The gravitons have weak strength and decay into pairs of Standard Model particles with a width dependent on c₀.

- Graviton masses are of electroweak scale, and there is a series of KK gravitons
- The masses of the KK excitations of the gravitons are $M_n = \zeta_n m_0$, where $m_0 = \kappa e^{-\pi \kappa R}$ and ζ_n are zeroes of the Bessel function (H. Davoudiasl 2001)

ADD vs. RS

• Difference between ADD and RS production of single photons versus dimuons at $\sqrt{s} = 2$ TeV

(S. Rai and S. Raychaudhuri 2003)

- ADD lines are for extra dimensions of 3 and 6 The RS curves are for $m_0 = 200$ and 400 GeV
- Possible to distinguish between two scenarios WHEPP9, January 3, 2006 - p. 42/45

- In Universal Extra Dimensions (UED) model, SM fields live in the extra-dimensional bulk
- All SM particles will have KK excitations (T. Appelquist et al 2001)
- There is KK number conservation.
- At lowest order, excited particles are produced in pairs
- Lightest KK particle is the photon with n=0
- Similar to SUSY as every SM particle has a tower of KK-partners
- Determining whether one is seeing UED or SUSY will require excellent determination of angular distributions.

Extra Z

- Several models with extra neutral gauge boson Z':
 - Grand unification ($E_6 \xi$ models)
 - Left-right symmetry
 - KK excitations of γ and Z
 - Little Higgs model(s)
- ILC can make precision measurements of various observables in $e^+e^- \to f\bar{f}$:

•
$$\sigma(e^+e^-
ightarrow \mu^+\mu^-), \, R^{
m had} = \sigma^{
m had}/\sigma_0$$

- A_{FB}^{l}
- $A^l_{
 m LR}$, $A^{
 m had}_{
 m LR}$
- $A_{
 m pol}^{ au}$
- $A^f_{
 m FB}(
 m pol)$

• Beam polarization with P_{e^-} and P_{e^+} of opposite signs helps to enhance cross section:

$$\sigma(P_{e^-}, P_{e^+}) = (1 - P_{e^-}P_{e^+})\sigma_0[1 - P_{ ext{eff}}A_{ ext{LR}}]$$

$$P_{\rm eff} = (P_{e^-} - P_{e^+})/(1 - P_{e^-}P_{e^+})$$

- With $\sqrt{s} = 500$ GeV, $L = 1 {
 m ab}^{-1}$, $P_{e^-} = 0.8$, $P_{e^+} = 0.6$, $m_{Z'}$ upto 2-3 TeV can be probed at 95% CL
- Ambiguity using only leptonic final states (S. Riemann 2001)
- Resolved if hadronic states included (S. Godfrey et al 2005)